
Parallel programming

C++11 threads

Libor Bukata a Jan Dvořák

2 /

C++11 threads? - What is it?

● Standard thread support library for C++
● Defined in C++ 11 standard
● Language built-in support for

– threads
– mutual exclusion
– condition variables
– futures

28

3 /

Why C++11 threads

● A new standard of C++11 defined API for threads, and
synchronization primitives.

● As the standard is accepted by all the modern compilers,
it is portable to the majority of operating systems.

● More high-level than pthreads, easier to write clean code.
● Support for atomicity and memory ordering.
● Disadvantages:

– Not all synchronization primitives are implemented,
e.g. barriers, read-write locks, semaphores...

– A modern compiler is needed, it is not so well tested as
pthreads.

28

4 /

Basic building blocks

● C++11 threads require to:
– include thread header to your source code

#include <thread>

– add pthread static library and c++11 support to
compilation process (for compilation on gcc, clang
or MinGW)

g++ hellothreads.cpp –std=C++11 -lpthread

– in case of Cmake, you can add flag by
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lpthread")
set (CMAKE_CXX_STANDARD 11)

● set (CMAKE_CXX_STANDARD_REQUIRED ON)

28

5 /

Hello world! Object oriented...
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>

using namespace std;
using namespace std::chrono;

class Company {
 public:
 void finishProject() {
 vector<thread> workers;
 int numOfWorkers = thread::hardware_concurrency();
 for (int jobId = 0; jobId < numOfWorkers; ++jobId)
 workers.push_back(thread(&Company::doJob, this, jobId));

 for (thread& worker : workers)
 worker.join();

 cout<<"Project completed..."<<endl;
 }
 private:
 void doJob(int id) {
 this_thread::sleep_for(chrono::seconds((6*id+3) % 5));
 cout<<"The job "<<id<<" has been completed!"<<endl;
 // The result of the ,,job" can be saved to a private variable.
 }
};

int main() {
 Company noname;
 noname.finishProject();
 return 0;
}

28

6 /

Thread creation - constructor

● thread thread(Function&& f, Args&&... args);

● Parameters:

– f – function that will be executed by the thread

– args – arguments for the start_routine function
● if the start routine f is a class member function, the first argument has

to be the object of that class

28

7 /

Thread termination

● Thread terminates when:
– It reaches the end of the start_routine
– It calls return;

● Note:

– The thread releases its stack during termination.

– Return value
● It is not possible to obtain return code from thread
● If you need to return a value you have to use... hmm... no, wait for next

week ;-)

28

8 /

Joining threads

● void thread.join();
– The function waits for the thread to terminate.
– It is not possible to join one thread more than once.

● bool thread.joinable() - checks if it is possible to join the thread

28

9 /

What happens if the thread is not joined?

● After the thread was terminated, the internal data are stored for further
usage.

● The thread.join() function reads this data to provide status information
about terminated thread. Afterwards, the function wipes the date out.

● If the thread.join() function is not called we need to let system know that
we do not care about the thread and it can release the data.

● It can cause a serious memory leak problem when huge number of threads
is used or each thread returns huge structure if those data are not wiped out.

28

10 /

Detaching threads

● void thread.detach();

– The function marks the thread identified by thread as detached. When a
detached thread terminates, its resources are automatically released back to the
system without the need for another thread to join with the terminated thread.

28

11 /

Let's try it.

● 1. Example – Counter
– Task:

● Create global integer variable counter
● Create 4 threads and each thread:

– 10000000-times increment the counter
● Print the resulting value of the counter after all the

threads are done!

28

12 /

Counter – Naive solution

28

13 /

4 * 10000000 = ???

● Something is wrong... probably.

● Don't worry. We are gonna take a look where is a mistake!

28

14 /

The risks of multi-threaded programming

● Let's assume that a well-known bank company has asked you to implement a
multi-threaded code to perform bank transactions.

● You start with the modest goal of allowing deposits.
● Clients deposit money and the amount gets credited to their accounts.
● As a result of having multiple threads running concurrently the following can

happen:

Thread 0 Thread 1 Account balance
Client requests a deposit Client requests a deposit 0 CZK

Check current balance = 0
CZK

0 CZK

Check current balance = 0 CZK 0 CZK

Ask for deposit 1000 CZK Ask for deposit 2000 CZK 0 CZK

Compute new balance = 2000CZK 0 CZK

Compute new balance =
1000CZK

Write new balance to account 2000 CZK

Write new balance to
account

1000 CZK

28

15 /

Race condition

● The problem is that many operations “take time” and can be
“interrupted” by other threads attempting to modify the same
data.

● This is called a race condition: the final result depends on the
precise order in which the instructions are executed.

● Unless Thread 0 completes its update before Thread 1 (or vice
versa) we get an incorrect result.

● This issue is addressed using mutexes (mutual exclusion).
● They ensure that certain common pieces of data are accessed

and modified by a single thread.

28

16 /

Mutex

● A mutex can only be in two states: locked or unlocked.
● Once a thread locks a mutex:

– Other threads attempting to lock the same mutex are blocked.
– Only the thread that initially locked the mutex has the ability to unlock it.

● This allows to protect regions of code.
● Typical mutex workflow:

– Create and initialize a mutex variable
– Several threads attempt to lock the mutex
– Only one succeeds and that thread owns the mutex
– The owner thread performs some set of actions
– The owner unlocks the mutex
– Another thread acquires the mutex and repeats the process
– The mutext should be destroyed at the end.

28

17 /

Mutex in C++11 threads - API

● #include <mutex>
– Include the header file with mutex interface

● void mutex.lock()
– Locks a mutex; blocks if another thread has locked this mutex and owns it.

● void mutex.unlock()
– Unlocks mutex; after unlocking, other threads get a chance to lock the mutex.

● bool mutex.try_lock()
– Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise

returns false.

28

18 /

Unique lock - API

● The mutexes are encapsulated by unique_lock classes, that
simplify the usage, e.g. they automatically unlock the held
mutex during their destruction (exceptions).

● unique_lock unique_lock(mutex_type& m)
– Takes mutex m and and locks it

● unique_lock unique_lock(mutex_type& m, std::defer_lock_t t)
– Takes mutex m and and keeps it unlocked

● unique_lock.lock()
– Locks the unique_lock

● unique_lock.unlock()
– Unlocks the unique_lock

void doJob(int id) {
unique_lock<mutex> outputGuard(mMtx, defer_lock);
this_thread::sleep_for(chrono::seconds((6*id+3) % 5));
outputGuard.lock();
cout<<"The job "<<id<<" has been completed!"<<endl;
// The result of the ,,job" can be saved to a private variable.

}

mutex mMtx;

28

19 /

It is time to repair our counter!

● Now, you know how to repair our Example 1.
● So, let's do it.

28

20 /

Aaah, that's the solution

28

21 /

Everything repaired?

● If you repaired your code and it works correctly,
you can try to code different task:

● Tool rental simulator
– Rental shop offers – hammer, screwdriver, saw
– Three handy guys:

1) Borrow hammer, work, borrow screw driver, work, return all

2) Borrow screw driver, work, borrow saw, work, return all

3) Borrow saw, work, borrow hammer, work, return all

– They are doing that repeatedly.

– Work means in our case:
for (int i = 0; i < 1000000; i++);

28

22 /

Handy guy = Thread

28

23 /

Open the RentalShop – Main thread

28

24 /

It is stuck somehow - Deadlock

● Guy 1 borrows a hammer and work
● Guy 2 borrows a screw driver and work
● Guy 3 borrows a saw and work
● Guy 1 needs a screw driver – waits for it
● Guy 2 needs a saw – waits for it
● Guy 3 needs a hammer – waits for it
● No one returns anything in this case.

28

25 /

Condition variables

● Allows signaling among threads
● Threads can wait until some event occurs
● Another thread wake up the waiting thread and

inform it that the situation already occurred
● The woken up thread should check if all

conditions are fulfilled and then continues.

28

26 /

Condition variables - API

● #include <condition_variable>
– Include the header with the condition variable interface

● void condition_variable.notify_one()

– Sends a signal to a single thread waiting on condition variable.

● void condition_variable.notify_all()

– Sends a signal to all threads waiting for condition_variable.

● void condition_variable.wait(unique_lock<mutex>& lock)
– Unlocks lock and puts the thread to sleep until another thread wake it up

by sending a signal. When the thread is woken up lock is locked again.

● void condition_variable.wait(unique_lock<mutex>& lock, Predicate pred)
– Equals to:

{
unique_lock<mutex> lk(mtx)
while (!condition_ready())

cv.wait(lk);
compute_something();

}

while (!pred())
cv.wait(lk);

28

27 /

It is time to repair our counter!

● Now, you should be able to repair our Tool
rental simulator example.

● So, let's do it.

28

28 /

References

● Tutorial to C++11 concurrency:
– C++11 Multithreading

● C++11 threads standard
– http://en.cppreference.com/w/cpp/thread

● An introduction to Parallel programming
– Peter Pacheco, University of San Francisco
– Morgan Kaufmann Publishers is an imprint of

Elsevier

28

http://thispointer.com/c-11-multithreading-part-1-three-different-ways-to-create-threads/
http://en.cppreference.com/w/cpp/thread

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

