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C++11 threads? - What is it?

● Standard thread support library for C++
● Defined in C++ 11 standard
● Language built-in support for

– threads
– mutual exclusion
– condition variables
– futures
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Why C++11 threads

● A new standard of C++11 defined API for threads, and 
synchronization primitives.

● As the standard is accepted by all the modern compilers, 
it is portable to the majority of operating systems.

● More high-level than pthreads, easier to write clean code.
● Support for atomicity and memory ordering.
● Disadvantages:

– Not all synchronization primitives are implemented, 
e.g. barriers, read-write locks, semaphores...

– A modern compiler is needed, it is not so well tested as 
pthreads.
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Basic building blocks

● C++11 threads require to:
– include thread header to your source code

#include <thread>

– add pthread static library and c++11 support to 
compilation process (for compilation on gcc, clang 
or MinGW)

g++ hellothreads.cpp –std=C++11 -lpthread

– in case of Cmake, you can add flag by
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lpthread")
set (CMAKE_CXX_STANDARD 11)

● set (CMAKE_CXX_STANDARD_REQUIRED ON)
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Hello world! Object oriented...
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>

using namespace std;
using namespace std::chrono;

class Company {
        public:
                void finishProject() {
                        vector<thread> workers;
                        int numOfWorkers = thread::hardware_concurrency();
                        for (int jobId = 0; jobId < numOfWorkers; ++jobId)
                                workers.push_back(thread(&Company::doJob, this, jobId));

                        for (thread& worker : workers)
                                worker.join();

                        cout<<"Project completed..."<<endl;
                }
        private:
                void doJob(int id) {
                        this_thread::sleep_for(chrono::seconds((6*id+3) % 5));
                        cout<<"The job "<<id<<" has been completed!"<<endl;
                        // The result of the ,,job" can be saved to a private variable.
                }
};

int main()      {
        Company noname;
        noname.finishProject();
        return 0;
}
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Thread creation - constructor

● thread thread( Function&& f, Args&&... args );

● Parameters:

– f – function that will be executed by the thread

– args – arguments for the start_routine function 
● if the start routine f is a class member function, the first argument has 

to be the object of that class
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Thread termination

● Thread terminates when:
– It reaches the end of the start_routine
– It calls return;

● Note:

– The thread releases its stack during termination.

– Return value
● It is not possible to obtain return code from thread
● If you need to return a value you have to use... hmm... no, wait for next 

week ;-)
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Joining threads

● void thread.join();
– The function waits for the thread to terminate.
– It is not possible to join one thread more than once.

● bool thread.joinable() - checks if it is possible to join the thread
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What happens if the thread is not joined?

● After the thread was terminated, the internal data are stored for further 
usage.

● The thread.join() function reads this data to provide status information 
about terminated thread. Afterwards, the function wipes the date out.

● If the thread.join() function is not called we need to let system know that 
we do not care about the thread and it can release the data.

● It can cause a serious memory leak problem when huge number of threads 
is used or each thread returns huge structure if those data are not wiped out.
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Detaching threads

● void thread.detach();

– The function marks the thread identified by thread as detached.  When a 
detached thread terminates, its resources are automatically released back to the 
system without the need for another thread to join with the terminated thread.
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Let's try it. 

● 1. Example – Counter
– Task:

● Create global integer variable counter
● Create 4 threads and each thread:

– 10000000-times increment the counter
● Print the resulting value of the counter after all the 

threads are done!
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Counter – Naive solution
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4 * 10000000 = ??? 

● Something is wrong... probably.

● Don't worry. We are gonna take a look where is a mistake!
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The risks of multi-threaded programming

● Let's assume that a well-known bank company has asked you to implement a 
multi-threaded code to perform bank transactions.

● You start with the modest goal of allowing deposits.
● Clients deposit money and the amount gets credited to their accounts.
● As a result of having multiple threads running concurrently the following can 

happen:

Thread 0 Thread 1 Account balance
Client requests a deposit Client requests a deposit 0 CZK

Check current balance = 0 
CZK

0 CZK

Check current balance = 0 CZK 0 CZK

Ask for deposit 1000 CZK Ask for deposit 2000 CZK 0 CZK

Compute new balance = 2000CZK 0 CZK

Compute new balance = 
1000CZK

Write new balance to account 2000 CZK

Write new balance to 
account

1000 CZK
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Race condition

● The problem is that many operations “take time” and can be 
“interrupted” by other threads attempting to modify the same 
data.

● This is called a race condition: the final result depends on the 
precise order in which the instructions are executed.

● Unless Thread 0 completes its update before Thread 1 (or vice 
versa) we get an incorrect result.

● This issue is addressed using mutexes (mutual exclusion).
● They ensure that certain common pieces of data are accessed 

and modified by a single thread.
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Mutex

● A mutex can only be in two states: locked or unlocked.
● Once a thread locks a mutex:

– Other threads attempting to lock the same mutex are blocked.
– Only the thread that initially locked the mutex has the ability to unlock it.

● This allows to protect regions of code.
● Typical mutex workflow:

– Create and initialize a mutex variable
– Several threads attempt to lock the mutex
– Only one succeeds and that thread owns the mutex
– The owner thread performs some set of actions
– The owner unlocks the mutex
– Another thread acquires the mutex and repeats the process
– The mutext should be destroyed at the end.
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Mutex in C++11 threads - API

● #include <mutex>
– Include the header file with mutex interface

● void mutex.lock()
– Locks a mutex; blocks if another thread has locked this mutex and owns it.

● void mutex.unlock()
– Unlocks mutex; after unlocking, other threads get a chance to lock the mutex.

● bool mutex.try_lock()
– Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise 

returns false.
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Unique lock - API

● The mutexes are encapsulated by unique_lock classes, that 
simplify the usage, e.g. they automatically unlock the held 
mutex during their destruction (exceptions).

● unique_lock unique_lock(mutex_type& m)
– Takes mutex m and and locks it

● unique_lock unique_lock(mutex_type& m, std::defer_lock_t t)
– Takes mutex m and and keeps it unlocked

● unique_lock.lock()
– Locks the unique_lock

● unique_lock.unlock()
– Unlocks the unique_lock

void doJob(int id) {
unique_lock<mutex> outputGuard(mMtx, defer_lock);
this_thread::sleep_for(chrono::seconds((6*id+3) % 5));
outputGuard.lock();
cout<<"The job "<<id<<" has been completed!"<<endl;
// The result of the ,,job" can be saved to a private variable.

}

mutex mMtx;
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It is time to repair our counter!

● Now, you know how to repair our Example 1.
● So, let's do it.
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Aaah, that's the solution
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Everything repaired?

● If you repaired your code and it works correctly, 
you can try to code different task:

● Tool rental simulator
– Rental shop offers – hammer, screwdriver, saw
– Three handy guys:

1) Borrow hammer, work, borrow screw driver, work, return all

2) Borrow screw driver, work, borrow saw, work, return all

3) Borrow saw, work, borrow hammer, work, return all

– They are doing that repeatedly.

– Work means in our case: 
for (int i = 0; i < 1000000; i++);
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Handy guy = Thread
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Open the RentalShop – Main thread
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It is stuck somehow - Deadlock

● Guy 1 borrows a hammer and work
● Guy 2 borrows a screw driver and work
● Guy 3 borrows a saw and work
● Guy 1 needs a screw driver – waits for it
● Guy 2 needs a saw – waits for it
● Guy 3 needs a hammer – waits for it
● No one returns anything in this case.

28



25 /

Condition variables

● Allows signaling among threads
● Threads can wait until some event occurs
● Another thread wake up the waiting thread and 

inform it that the situation already occurred
● The woken up thread should check if all 

conditions are fulfilled and then continues.
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Condition variables - API

● #include <condition_variable>
– Include the header with the condition variable interface

● void condition_variable.notify_one()

– Sends a signal to a single thread waiting on condition variable.

● void condition_variable.notify_all()

– Sends a signal to all threads waiting for condition_variable.

● void condition_variable.wait(unique_lock<mutex>& lock)
– Unlocks lock and puts the thread to sleep until another thread wake it up 

by sending a signal. When the thread is woken up lock is locked again.

● void condition_variable.wait(unique_lock<mutex>& lock, Predicate pred)
– Equals to:

{
unique_lock<mutex> lk(mtx)
while (!condition_ready())

cv.wait(lk);
compute_something();

}

while (!pred())
cv.wait(lk);
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It is time to repair our counter!

● Now, you should be able to repair our Tool 
rental simulator example.

● So, let's do it.
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References

● Tutorial to C++11 concurrency:
– C++11 Multithreading

● C++11 threads standard
– http://en.cppreference.com/w/cpp/thread

● An introduction to Parallel programming
– Peter Pacheco, University of San Francisco
– Morgan Kaufmann Publishers is an imprint of 

Elsevier
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