LEARNING
MySQL

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

ADOUL . . . 1
Chapter 1: Getting started with MySQIL................ 2
REMaArKS . 2
VBISIONS . . . 2
EX ML . . 3
Getling Started. . ..o 3
Information Schema EXamples. 7
ProCesslist. 7
Stored Procedure SearChing......... ... 7
Chapter 2: ALTER TABLE 8
1] P 8
REMaArKS . . 8
XML . . 9
Changing storage engine; rebuild table; change file_per table.............. i 9
ALTER COLUMN OF TABLE. e 9
ALTER table add INDEX.ttt e et et 9
Change auto-iNCremMent ValUE. oo 10
Changing the type of a primary Key COlUMN. oo e 10
Change column definition.o 10
Renaming a MySQL database. 10
Swapping the names of two MySQL databases........ ... 11
Renaming a MySQIL table. 12
Renaming a columnin a MySQL table. o e 12
Chapter 3: Arithmetic. ... 14
REMaArKS . . 14
XAl . . 14
ANtMEtiC OPEIATOrS. ... e e 14
BIGIN T 14
DOUBLE . .. 15

Mathematical CoNStaNtS. 15

Trigonometry (SIN, COS) o e 15
S 15
GOSN . e 15
T AN Nt . 15
Arc CoSINE (INVEISE COSIME)ttt e e e e e e 16
ArC SINE (INVEISE SINE) 16
Arc Tangent (INVErse tangent) oo 16
@0 = oo = 1 P 16
G0NV B SION . . . 16
Rounding (ROUND, FLOOR, CEIL). ...t e e 17
Round a decimal number to aninteger value.......... ... 17
ROUND Up @ NUMDET . .. 17
Round dOWN @ NUMIDET e 17
Round a decimal number to a specified number of decimal places...................coiii. 17
Raise a number to @ POWEr (POW) e 18
Square ROOt (SO RT)t 18
Random Numbers (RAND) e 18
Generate a random NUMDET e 18
Random NUMber in a range. 18
Absolute Value and Sign (ABS, SIGN) 19
Chapter 4: BacktiCKS 20
EX ML . . 20
BaCKICKS USAQE.o 20
Chapter 5: Backup using mysqldump ... 21
)11 7= 21
= L= 10 0 T=] (] T 21
ROmMIa K. 22
EX ML . . 22
Creating a backup of adatabase ortable. 22

Specifying username and PasSWOI.ttt e 23

Restoring a backup of a database ortable. 23

mysqldump from a remote server with COMPreSSION.o i e 24

restore a gzipped mysqgldump file without UNnCOMPressINg. ..ot e 24
Backup direct to Amazon S3 with COMPression. 24
Tranferring data from one MySQL serverto another. 24
Backup database with stored procedures and functions. 25
Chapter 6: Change Password......... ... 26
EX ML . . 26
Change MySQL root password in LINUX.t 26
Change MySQL root password in WINAOWS. e 27

P I OGS S . o 27
Chapter 7: Character Sets and Collations......................oo 28
XMl . . 28
DECIAratioN 28

(00 o1 =T o7 o o 28
Which CHARACTER SET and COLLATION?o 28
Setting character sets on tables and fields. 29
Chapter 8: Clusteringo 30
EX ML . . 30
DiSamMIDIGUALION. . 30
Chapter 9: Comment Mysql. 31
ROmMIa K. . 31
EX ML . . 31
AdAING COMMENTS. . ..o e e e e e e e 31
Commenting table definitions. 31
Chapter 10: Configurationand tuning..................... 33
RemMarKS 33
X AMIDIES . 33
INNODB PEIfOIMANCE. . . . oo e e e e 33
Parameter to allow huge data to iNSert.o 33
Increase the string limit for group_CONCAL. o e 34
Minimal INnnoDB configuration. 34

Secure MySQL eNnCryplion. 35

Chapter 11: Connecting with UTF-8 Using Various Programming language............................ 36

EX ML . . 36
Py NON . 36
PH P 36

Chapter 12: Converting from MyISAM to InnoDB..................... 38

EX ML . . 38
BaSiC CONVEISION. .. 38
Converting All Tables in one Database.o e 38

Chapter 13: Create New USer. 39

REMa K. 39

XMl .. 39
Create @ MySQL USEr. e e e 39
SPECITY the PASSWOIA. e e e e 39
Create new user and grant all priviliges to schema. 39
RENaMING USEI. . . e e e 40

Chapter 14: Creating databases...................... 41

S N X, .. 41

= = 10 0 T=] (] T 41

EX ML . . 441
Create database, USErs, and grants.oouuiii ettt e et e e e 41
MYDatabase 43
SYSIEM Databas s . . . oot 43
Creating and Selecting @ Database.t 44

Chapter 15: Customize PST ... 45

XMl .. 45
Customize the MySQL PS1 with current database.......... ... i 45
Custom PS1 via MySQL configuration file. ... 45

Chapter 16: Data Ty PeS 46

XML . . 46
Implicit / automatic Casting. ... e 4B
VARCHAR(255) -- OF MO, oot e e e e 46

INT as AUTO _INCREMENT e 47

OIS . 47

INtrOdUCHION (NUMEBKIC)ottt ettt e e e e e e e e e e e 48
[[a1C=To =T g 1Y/ 0 1= 48
FIXEA POt Ty DS . . o e e 48
DML . .o 49
Floating PoOiNt Ty Pes . . .o e 49

Bt ValUE Ty P . oo 49
CHA R (N - et 50
DATE, DATETIME, TIMESTAMP, YEAR, and TIME. o e 50
Chapter 17: Date and Time Operations. ... 52
EX ML . . 52

N O () - - ettt 52
Date anthmetiC.ooo 52
Testing against a date range.o 53
SYSDATE(), NOW(), CURD AT E (). ..o ettt ettt 53
Extract Date from Given Date or DateTime EXpression.o i 53
Using an index for a date and time [00KUP. oot e 53
Chapter 18: Dealing with sparse or missingdata....................................... 55
EX ML . . 55
Working with columns containg NULL values. i 55
Chapter 19: DELETE 58
)11 - ¥ 58
= 1= 10 0 T=] (] 58
EX ML . . 58
Delete with Where ClauSe. i e e 58
Delete all rows from @ table. ... 58
LIMITING EIETES . . . oo e e e e e e e e e e e e e e e 59
MUI-TAbIe Deletes. . ..o e e 59
fOrEIgN KOY S 60
BasiC delete. .. o 61
DELETE v TRUN C AT E . .. e 61

Multi-table DELE T E 61

S N X, .. 63
ParamM et S, . 63
EX ML . . 63
DrOD TaDl . . 63
Drop tables from database. 64
Chapter 21: Dynamic Un-Pivot Table using Prepared Statement.. 65
EX ML . . 65
Un-pivot a dynamic set of columns based on condition......... ... 65
Chapter 22: ENUM. ... 68
EX ML . . 68
WY ENUM e e e 68
TINYINT @as an alternative. e 68
VARCHAR @s an allernatiVe. 69
AddING @ NEW OPION 69
NULL VS NOT NULL. . oo e e e e e e 69

Chapter 23: Error 1055: ONLY_FULL_GROUP_BY: something is not in GROUP BY clause 71

1 (0T [o7 1o o 71
RS . . 71
EX ML . . 72
Using and misusing GROUP BY oo e 72
Misusing GROUP BY to return unpredictable results: Murphy's Law. ... 72
Misusing GROUP BY with SELECT *, and how to fix it............. e 73
ANY VAU). . oottt 74
Chapter 24: Error COAeS 75
AL .. 75
Error code 1064: SYNtaX ©II0r.ttt e e e e e 75
Errorcode 1175: Safe Update.o e 75
Error code 1215: Cannot add foreign key constraint........ ... i 76
1045 ACCESS AENIBA. e 77
1236 "impossible position™ in Replication.o 77

2002, 2003 CannOt CONNEBCE. 78

126, 127, 184, 144, 14D e 78

L1 79
L. o 79
126, 1054, 1146, 1062, 24 e e e e e e e e e 79
Chapter 26: EVeNtS. 81
EX ML . . 81
Create AN EVeNt. o 81
Schema for testing 81
Create 2 events, 1st runs daily, 2nd runs every 10 minutes. ... 81
Show event statuses (different approaches). ... 82
Random stuff t0 CONSIAET. ... o 83
Chapter 26: Extract values from JSONtype.............oo 84
It OTUCTION. ... 84

S N X . .. 84
= L= 10 0 T=] (] T 84
REmMIA K. 84
EX ML . . 84
Read JSON Array ValUE.ot 84
JSON EXIract Operators.t e e e 85
Chapter 27: Full-Text searCh............... 87
It OTUCTION. 87
ROmMIa K. 87
EX ML . . 87
Simple FULLTEXT S@arCh.o e e e 87
Simple BOOLEAN SEaAICh. e e 87
Multi-column FULLTEXT SEarCh.o e 88
Chapter 28: GroUP Byo 89
1= VP 89
= 1= 10 0 T=] (] < 89

RIS . .o 89

X AMIDIES . 89

GROUP BY USING SUM FUNCHON. ... 89
Group By Using MIN fUNCHON. oo e 90
GROUP BY USING COUNT FUNCHON. ... ettt et et 90
GROUP BY USING HAVINGo e e e e e e e 90
Group By using Group CONCAL.t 90
GROUP BY with AGGREGATE fUNCHONS.o o 91
Chapter 29: Handling Time ZONES. ... 94
RO K. 94
XAl . . 94
Retrieve the current date and time in a particular time zone............coo 94
Convert a stored 'DATE" or 'DATETIME" value to anothertime zone............... ... i 94
Retrieve stored "TIMESTAMP® values in a particulartime zone................. . i 95
What is my server's local time zone setting?. 95
What time_zone values are available in my Server?. oo 96
Chapter 30: Indexes and KeYS. 97
1] €= P 97
ROmMIA K. 97
GNP S . . 97
EX ML . . 98
L0 =T (=0T = 98
Create UNIQUE INAEX.ttt e e e e 98
Do o N 0o =G 98
Create COMPOSItE INAEX. o e e e e e e 98
AUTO _INCREMENT K Yttt e e e e e e e e e e e e 98
Chapter 31: INSERT ... 100
1= 100
REMa K. 100
= 10 o] =T 101
BaSIC NSt . . o 101
INSERT, ON DUPLICATE KEY UP D AT E. ... 101

Inserting MUIIPIE TOWS. e e 101

[gNOrING EXISTING FOWS. e 102

INSERT SELECT (Inserting data from another Table). ... 102
INSERT with AUTO_INCREMENT + LAST_INSERT_ID() ...ttt e 103
LoSt AUTO_INCREMENT IS . ..ottt et ettt et 104
Chapter 32: Install Mysql container with Docker-Compose........................coii, 106
= 10 o] =T 106
Simple example With dOCKEIr-COMPOSE. e e e e e e e 106
Chapter 83: JOINSo 107
1= 107
XMl . . 107
JOINING EXAMDIES . . o 107
JOIN with subquery ("Derived" table) 107
Retrieve customers with orders -- variations onatheme........................... 108

FUIL OUEr JOIN. .. 109
INNEr-J0IN fOr B ablES . . . 110
JOINS VISUANZEA. 111
Chapter 34: JOINS: Join 3 table with the same nameofid... 113
XMl . . 113
Join 3 tables on a column with the same name...... ... 113
Chapter 85: JSON o 114
INTrOAUCTION. . .. 114
REmMarKS . . 114
= 10 o] =T T 114
Create simple table with a primary key and JSON field.......... e 114
Insert @ sSimpPle JSON oo 114
Insert mixed data into @ JSON field..o 114
Updating a JSON field.o e e 115
CAST data 1o JSON By eottt et e e et e 115
Create Json ObJECt anNd AITaYcoounii it ettt e e e 115
Chapter 36: Limitand Offset.................. 117
1= 117

X AMIDIES . 117

Limit and Offset relationship. 117
LIMIT clause withone argument. ... 117
LIMITclause with two arguments ... 118
OFFSET keyword: alternative syntax..................... 119
Chapter 37: LOAD DATAINFILE. ... 120

1] VO 120
= 10 o] =T 120

using LOAD DATA INFILE to load large amount of datatodatabase.................... i, 120

Import a CSV file into @ MySQIL table.o o 121

Load data With dUPlICALESo 121
LOAD DATA LOC AL ... 121
LOAD DATA INFILE 'fname' REPLAGE 121
LOAD DATA INFILE 'fname' IGNORE ..., 122
Load via intermediary table............ ... 122

MO /X O . . o 122
Chapter 88: Log files.o 123
= 10 o] =T 123

T 123

SIOW QUETY LOG. . . ettt e e 123

General QUENY LOg. .. oo 124

) 1o o 126
Chapter 39: Many-to-many Mappingtable......................... 128

REmMarKS . . 128
XAl . . 128

Ty PICAl SCNEMA. . . 128

Chapter 40: MyISAM ENgiNe 129
REmMarKS . . 129
= 10 o] =T 129

ENGINE=SMY IS AM . e 129

Chapter 41: MySQL Admin. ... 130

X AMIDIES . 130

Change ro0t PASSWOIT.ttt e e e e e 130
DrOP databaseo 130
Atomic RENAME & Table Reload. e 130
Chapter 42: MySQL client. ... 131
1= 131

P arAME S . 131
= 10 o] =T T 131
BaSE OGN . .. 131
EXECULE COMMANGS e e e 132
Execute command from a string. ... 132
Execute from SCript file:. ..o o 133
Write the output On afile. ... 133
Chapter 43: MySQL LOCK TABLE ... 134
1= VO 134
REMaArKS . . 134
= 10 o] =T 134
MY SOl LOCKS . . .o e 134
ROW LeVel LOCKING. e 135
Chapter 44: Mysql Performance Tips............cooiiii 138
EX ML . .. 138
Select Statement Optimization. 138
Optimizing Storage Layout for INnODB Tables. e 138
Building @ COmMPOSItE INABX.o e 139
Chapter 45: MySQL UNIONS ... 140
1] VP 140
REmMarKS . . 140
X aMIDIES . 140
LU To] 0] o= = o] 140
UNiOn AL . o 141
UNION ALL With WHEREo e 141

Chapter 46: mysqlimPOrto 143

P aramM e O S . ..o 143

RemMarKS. . 143
X aMIDIES . 143
BaSIC USAgE . .. 143
Using a custom field-delimiter. e 144
Using a CUSTOmM rOW-Aelimiter.o e e e 144
Handling duplicate Keys. e 144
Conditional IMPOK 145
IMPOIt @ STANAANA CSV. .. .o e e e 145
Chapter 47: NULL ... 146
X AMIDIES . 146
Uses fOr NULL. ... oo e 146
TestiNg NULLS. ... e e e 146
Chapter 48: One to Many ... 147
INTrOAUCTION. . .. 147
REmMarKS . . 147
= 10 o] =T 147
Example Company Tables.o 147

Get the Employees Managed by a Single Manager. i 148

Get the Manager for a Single EMPIOYEe. i 148
Chapter 49: ORDER BY ... 149
EX ML . . 149
oM X S . e 149
BaSIC . o 149
ASCending / DESCENING.ot 149
SOME HCKS 149
Chapter 50: Partitioning................. 151
REmMarKS . . 151
= 10 o] =T 151
RANGE Partitioning.oooo ettt e 151
LIST Partitioning. . ..o e 152

HASH Partitioning.o 153

11 - ¥ 154
RS . 154
EX ML . . 154
Add The COITECT INAEX. e e e e e e 154
Setthe Cache COrreCtly. 155
Avoid INeffiCient CONSIIUCTES. o e 155

N Ot S . .. 155
Have an IND X . .. 155
Don't hide in fUNCHON. o e 156

O R 156

ST oo 01T =Y 156
JOIN + GROUP BY .. 157
Chapter 52: PivOt QUEKIESo 158
REmMIa K. 158
XML . . 158
Creating @ PiVOt QUETY o e e e e 158
Chapter 53: PREPARE Statements..................... 160
1= 160
= 10 o] =T 160
PREPARE, EXECUTE and DEALLOCATE PREPARE Statements................cooiiiiii i, 160
CoNSIIUCT @NA BXECULE. . . .ottt e e e e e e e 160
Alter table with add ColUMIN. 161
Chapter 54: Recover and reset the default root password for MySQL 6.7+........................... 162
It OTUCTION. 162
RS . 162
EX M. . 162
What happens when the initial start up of the server.o 162
How to change the root password by using the default password. i, 162
reset root password when " /var/run/mysqgld’ for UNIX socket file don't exists". ...l 163
Chapter 55: Recover from lost root password. ... 165

XAl . . 165

Set root password, enable root user for socket and http access. ... 165

Chapter 56: Regular EXpressions................ooo i 166
IO dU G ON. . 166
X aAMIDIES . 166

REGEXP / RLIKE . . .o e e e 166
Pt N 166
Pt N B . 166
NOT REGEX P . .. e 167
REgEX CON AN . 167
Any character DetWeen [.. ... oo 167
P At N OF | 167

Counting regular expression matches..................... 167

Chapter 57: Replication................. 169
REMIA K. 169
= 10 o] =T 169

Master - Slave Replication SetUp.o 169

ReEPliCatioN ErrOrs. ... e 172

Chapter 58: Reserved WOrdS ... 174
It OTUCTION. 174
REMIa K. 174
EX ML . . 179

Errors due to reSErved WOIS.o e e 179

Chapter §9: Security via GRANTS ... 181
EX ML . . 181

BESt PracCliCe. . ..o 181

HOSE (Of USEI@NOSE). . ..o 181

Chapter 60: SELECT 183
It OTUCTION. 183
)11 - 183
ROmMIA K. 183

SELECT by COIUMN NAME. e e e e 183

SELECT @ll COIUMNS (*). 1.ttt et e 184
SELECT With WHEREttt e 185
Query with a nested SELECT inthe WHERE clause............................ 185
SELECT WIth LIKE (96) oo oo e 185
SELECT With AlaS (AS) .. 187
SELECT With @ LIMIT ClauSe.o e 187
SELECT With DISTINC T . e 188
SELECT With LIKE (L) ..o 189
SELECT With CASE Or IF . .. 189
SELECT with BETWEEN. oo e 190
SELECT With date range. 191
Chapter 61: Server Information................... 192
ParaME S, . 192
X aAMIDIES . 192
SHOW VARIABLES @XAMPIE.ttt 192
SHOW STATUS EXAMPIE. ...t 192
Chapter 62: SSL Connection Setup................oooi i 194
= 10 o] =T 194
Setup for Debian-based SYsStemMS. e 194
Generating a CA and SSLKeYS....... ..o 194
Adding the keys to MySQILo 194
Testthe SSL CONNECHIONo 195
ENfOrCiNg SO ... 195
References and further reading:. 196
Setup for CeNtOST7 / RHELT\ttt 196
First, logonto dbserver. 196
END OF SERVER SIDE WORK FORNOW. ..., 198
stillonthe client here. ... 199
NOW WE ARE READY TO TEST THE SECURE CONNECTION......................coo 200

Chapter 63: Stored routines (procedures and functions).. 202

= L= 10 0 T=] (] T 202
REMa K. 202
EX ML . . 202
Create @ FUNCHON. e e 202
Create Procedure with a Constructed Prepare. 203
Stored procedure with IN, OUT, INOUT parameters.o 204

L0 =TT £ 205
MUIIPIE RESUISELS. . ..o 207
Create a fUNCHION. ... o 207
Chapter 64: String operations........... ... 208
== 10 0 T=] (] T 208
EX ML . . 210
Find element in comma separated list.o 210
STR_TO_DATE - Convert string 10 date.oo oot e e 210
LOWER() / LCASE() . . oo e 211
REPLACE(). . . et et e 211
SUBSTRINGI() - - e 211
UPPER() / UCASE(). . e 211
LENGTH) oo 212
CHAR L LEN G TH () . oo ettt e e 212
HE K (SHT) - oo 212
Chapter 65: Table Creation.................... 213
S X . e 213
RO KS . 213
= 10 o] =T 213
BasiC table Creation. oo 213
Setting defaulls. ... 214
Table creation with Primary Key. ... 214
Defining one column as Primary Key (inline definition)................................ 215
Defining a multiple-column Primary Key................ 215

Table creation with Foreign Keyo 216

Cloning an existing table. ... 216

CREATE TABLE FROM SELECT ... 217
Show Table StruCtUre. 217
Table Create With TimeStamp Column To Show Last Update.....................c.o. 218
Chapter 66: Temporary Tables......... ... 219
EX ML . . 219
Create Temporary Table. 219
Drop Temporary Table.o e e 219
Chapter 67: Time with subsecond precision..................... 221
REmMarKS . 221
EX ML . . 221
Get the current time with millisecond precision. o 221

Get the current time in a form that looks like a Javascript timestamp..............co i i 221
Create a table with columns to store sub-second time..............o 222
Convert a millisecond-precision date / time value totext......... ... 222
Store a Javascript timestamp into @ TIMESTAMP COlUMN. 222
Chapter 68: TransacCtion 223
EX ML . . 223
Start TranSaCtiON o 223
COMMIT , ROLLBACK and AUTOCOMMIT o e 224
Transaction using JDBO DIiVer et et e e e 226
Chapter 69: TRIGGERS ... 230
1= VP 230
RO K S . 230
FOR EACH ROW ... 230
CREATEOR REPLACE TRIGGER..............oo 230
AL .. 231
BaSIC TGO . . o 231
TYPES Of LGOS . .o e 231
TiMING . 231

Before Update trigger example. 232
After Delete trigger example. ... 232
Chapter 70: UNION o 234
1] VO 234
REmMarKS . 234
EX ML . . 234
Combining SELECT statements with UNION. ... i 234
OR D ER BY . 234
Pagination via OF FSET o 235
Combining data with different ColumNs. 235
UNION ALL and UNION. ..o e e e e e 235
Combining and merging data on different MySQL tables with the same columns into unique row............... 236
Chapter 71: UP D AT E ... 237
1] VO 237
X aAMIDIES . 237
BasiC Update.o 237
UPating ONne FOW. e 237
Updating all rOWS. 237
Update with Join Pattern.o e 238
UPDATE with ORDER BY and LIMIT 238
Multiple Table UP D AT E e e e e e e 239
BUIK UP D AT E . e e e e 239
Chapter 72: Using Variables. ... 241
EX ML . . 241
Setting Variables. 241
Row Number and Group By using variables in Select Statement................. 242
Chapter 73: VIEW 244
1] VO 244
ParaME S, . 244

X AMIDIES . 245

CrEate @ VW . oo 245
A View from WO tablESo 246
Updating atable via a VIEW 246
DROPPING A VI EW .o e e 246

07 (= Yo [| /- T 248

Eout

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mysq|

It is an unofficial and free MySQL ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official MySQL.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mysql
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with MySQL

Remarks

MySQL is an open-source Relational Database Management System (RDBMS) that is developed

and supported by Oracle Corporation.

MySQL is supported on a large number of platforms, including Linux variants, OS X, and
Windows. It also has APIs for a large number of languages, including C, C++, Java, Lua, .Net,
Perl, PHP, Python, and Ruby.

MariaDB is a fork of MySQL with a slightly different feature set. It is entirely compatible with
MySQL for most applications.

Versions

Version | Release Date

1.0 1995-05-23
3.19 1996-12-01
3.20 1997-01-01
3.21 1998-10-01
3.22 1999-10-01

3.23 2001-01-22

4.0 2003-03-01
4.1 2004-10-01
5.0 2005-10-01
5.1 2008-11-27
5.5 2010-11-01
5.6 2013-02-01

https://riptutorial.com/

http://www.mysql.com/
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/refman/5.7/en/connectors-apis.html
https://mariadb.com/
https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-features/

Version | Release Date

5.7 2015-10-01

Examples

Getting Started
Creating a database in MySQL

CREATE DATABASE mydb;

Return value:

Query OK, 1 row affected (0.05 sec)

Using the created database nydo
USE mydb;
Return value:

Database Changed

Creating a table in MySQL

CREATE TABLE mytable
(

id int unsigned NOT NULL auto_increment,
username varchar (100) NOT NULL,

email varchar (100) NOT NULL,

PRIMARY KEY (id)

)i

CREATE TABLE mytable Will create a new table called nytabie.

id int unsigned NOT NULL auto_increment Creates the ia column, this type of field will assign a
uniqgue numeric ID to each record in the table (meaning that no two rows can have the same i4 in
this case), MySQL will automatically assign a new, unique value to the record's iad field (starting
with 1).

Return value:

Query OK, 0 rows affected (0.10 sec)

Inserting a row into a MySQL table

INSERT INTO mytable (username, email)

https://riptutorial.com/

VALUES ("myuser", "myuser@example.com");

Example return value:
Query OK, 1 row affected (0.06 sec)

The varchar a.k.a strings can be also be inserted using single quotes:

INSERT INTO mytable (username, email)
VALUES ('username', 'username(@example.com');

Updating a row into a MySQL table
UPDATE mytable SET username="myuser" WHERE id=8
Example return value:

Query OK, 1 row affected (0.06 sec)

The int value can be inserted in a query without quotes. Strings and Dates must be enclosed in
single quote ' or double quotes .

Deleting a row into a MySQL table

DELETE FROM mytable WHERE id=8

Example return value:
Query OK, 1 row affected (0.06 sec)

This will delete the row having ia is 8.

Selecting rows based on conditions in MySQL

SELECT * FROM mytable WHERE username = "myuser";

Return value:

fo— o +
| id | username | email |
fo— o +
| 1 | myuser | myuser@example.com |
fo— o +

1 row in set (0.00 sec)

https://riptutorial.com/

Show list of existing databases

SHOW databases;

Return value:

o +
| Databases |
o +
| information_schema]
| mydb |
o +

2 rows in set (0.00 sec)

You can think of "information_schema" as a "master database" that provides access to database
metadata.

Show tables in an existing database

SHOW tables;

Return value:

o +
| Tables_in_mydb |
o +
| mytable |
o +

1 row in set (0.00 sec)

Show all the fields of a table

DESCRIBE databaseName.tableName;

or, if already using a database:

DESCRIBE tableName;

Return value:

fom— e fo——————— e e et e +
| Field | Type | Null | Key | Default | Extra |
fom— e fo——————— e e et e +
| fieldname | fieldvaluetype | NO/YES | keytype | defaultfieldvalue | |
fom— e fo——————— e e et e +

Extra May contain auto_increment fOr example.

https://riptutorial.com/

key refers to the type of key that may affect the field. Primary (PRI), Unique (UNI) ...
n row in set (0.00 sec)

Where n is the number of fields in the table.

Creating user

First, you need to create a user and then give the user permissions on certain databases/tables.
While creating the user, you also need to specify where this user can connect from.

CREATE USER 'user'@'localhost' IDENTIFIED BY 'some_password';

Will create a user that can only connect on the local machine where the database is hosted.

CREATE USER 'user'@'$' IDENTIFIED BY 'some_password';

Will create a user that can connect from anywhere (except the local machine).
Example return value:
Query OK, 0 rows affected (0.00 sec)
Adding privileges
Grant common, basic privileges to the user for all tables of the specified database:

GRANT SELECT, INSERT, UPDATE ON databaseName.* TO 'userName'@'localhost';

Grant all privileges to the user for all tables on all databases (attention with this):

GRANT ALL ON *.* TO 'userName'(@'localhost' WITH GRANT OPTION;

As demonstrated above, +.+ targets all databases and tables, databasenane. = targets all tables of
the specific database. It is also possible to specify database and table like so

databaseName.tableName.
witH GranT opTIoN Should be left out if the user need not be able to grant other users privileges.

Privileges can be either

ALL

or a combination of the following, each separated by a comma (non-exhaustive list).

SELECT
INSERT
UPDATE
DELETE

https://riptutorial.com/

CREATE
DROP

Note

Generally, you should try to avoid using column or table names containing spaces or using
reserved words in SQL. For example, it's best to avoid names like tabie OF first name.

If you must use such names, put them between back-tick - - delimiters. For example:

CREATE TABLE " table’

(
“first name’ VARCHAR (30)

)i
A query containing the back-tick delimiters on this table might be:

SELECT " first name’ FROM " table’ WHERE "first name’™ LIKE 'a%';

Information Schema Examples

Processlist

This will show all active & sleeping queries in that order then by how long.
SELECT * FROM information_schema.PROCESSLIST ORDER BY INFO DESC, TIME DESC;
This is a bit more detail on time-frames as it is in seconds by default

SELECT ID, USER, HOST, DB, COMMAND,

TIME as time_seconds,

ROUND (TIME / 60, 2) as time_minutes,

ROUND (TIME / 60 / 60, 2) as time_hours,

STATE, INFO

FROM information_schema.PROCESSLIST ORDER BY INFO DESC, TIME DESC;

Stored Procedure Searching

Easily search thru all stored procedures for words and wildcards.

SELECT * FROM information_schema.ROUTINES WHERE ROUTINE_DEFINITION LIKE 'Sword%';

Read Getting started with MySQL online: https://riptutorial.com/mysql/topic/302/getting-started-
with-mysq|

https://riptutorial.com/

https://riptutorial.com/mysql/topic/302/getting-started-with-mysql
https://riptutorial.com/mysql/topic/302/getting-started-with-mysql

Chapter 2: ALTER TABLE

Syntax

« ALTER [IGNORE] TABLE tbl_name [alter_specification [, alter_specification] ...]
[partition_options]

Remarks

alter_specification: table_options
| ADD [COLUMN] col_name column_definition [FIRST | AFTER col_name]
| ADD [COLUMN] (col_name column_definition, ...)
| ADD {INDEX|KEY} [index_name] [index_type] (index_col_name,...) [index_option]
| ADD [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...) [index_option]

| ADD [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY] [index_name] [index_type]
(index_col_name, ...) [index_option]
| ADD FULLTEXT [INDEX|KEY] [index_name] (index_col_name,...) [index_option]
| ADD SPATIAL [INDEX|KEY] [index_name] (index_col_name,...) [index_option]
| ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (index_col_name, ...)
reference_definition
| ALGORITHM [=] {DEFAULT|INPLACE |COPY}
ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
CHANGE [COLUMN] old_col_name new_col_name column_definition [FIRST|AFTER col_name]
LOCK [=] {DEFAULT |NONE | SHARED |EXCLUSIVE}
MODIFY [COLUMN] col_name column_definition [FIRST | AFTER col_name]
DROP [COLUMN] col_name
DROP PRIMARY KEY
DROP {INDEX|KEY} index_name
DROP FOREIGN KEY fk_symbol
DISABLE KEYS
ENABLE KEYS
RENAME [TO|AS] new_tbl_name
RENAME {INDEX|KEY} old_index_name TO new_index_name

ORDER BY col_name [, col_name]
CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
[DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| DISCARD TABLESPACE

| IMPORT TABLESPACE

| FORCE

| {WITHOUT|WITH} VALIDATION

| ADD PARTITION (partition_definition)

| DROP PARTITION partition_names

| DISCARD PARTITION {partition_names | ALL} TABLESPACE

| IMPORT PARTITION {partition_names | ALL} TABLESPACE

| TRUNCATE PARTITION {partition_names | ALL}

| COALESCE PARTITION number

| REORGANIZE PARTITION partition_names INTO (partition_definitions)
| EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH|WITHOUT} VALIDATION]
| ANALYZE PARTITION {partition_names | ALL}

| CHECK PARTITION {partition_names | ALL}

| OPTIMIZE PARTITION {partition_names | ALL}

| REBUILD PARTITION {partition_names | ALL}

| REPAIR PARTITION {partition_names | ALL}

| REMOVE PARTITIONING

https://riptutorial.com/

| UPGRADE PARTITIONING

index_col_name: col_name [(length)] [ASC | DESC]
index_type: USING {BTREE | HASH}
index_option: KEY_BLOCK_SIZE [=] value

| index_type

| WITH PARSER parser_name
| COMMENT 'string'

table_options: table_option [[,] table_option] ... (see CREATE TABLE options)
partition_options: (see CREATE TABLE options)

Ref: MySQL 5.7 Reference Manual /... / ALTER TABLE Syntax/ 14.1.8 ALTER TABLE Syntax
Examples

Changing storage engine; rebuild table; change file_per_table

For example, if t1 is currently not an InnoDB table, this statement changes its storage engine to
InnoDB:

ALTER TABLE tl ENGINE = InnoDBj;

If the table is already InnoDB, this will rebuild the table and its indexes and have an effect similar
to opTMIZE TABLE. YOU May gain some disk space improvement.

If the value of innodb_file_per_table is currently different than the value in effect when 1 was built,
this will convert to (or from) file_per_table.

ALTER COLUMN OF TABLE

CREATE DATABASE stackoverflow;
USE stackoverflow;

Create table stack(
id_user int NOT NULL,
username varchar (30) NOT NULL,
password varchar (30) NOT NULL
)i

ALTER TABLE stack ADD COLUMN submit date NOT NULL; -- add new column

ALTER TABLE stack DROP COLUMN submit; -- drop column

ALTER TABLE stack MODIFY submit DATETIME NOT NULL; -- modify type column

ALTER TABLE stack CHANGE submit submit_date DATETIME NOT NULL; -- change type and name of
column

ALTER TABLE stack ADD COLUMN mod_id INT NOT NULL AFTER id_user; —-- add new column after

existing column

ALTER table add INDEX

To improve performance one might want to add indexes to columns

https://riptutorial.com/ 9

http://dev.mysql.com/doc/refman/5.7/en/create-table.html
http://dev.mysql.com/doc/refman/5.7/en/create-table.html
http://dev.mysql.com/doc/refman/5.7/en/alter-table.html

ALTER TABLE TABLE_NAME ADD INDEX " index_name’ (column_name’)

altering to add composite (multiple column) indexes

ALTER TABLE TABLE_NAME ADD INDEX index_name’ (coll’, col2’)

Change auto-increment value

Changing an auto-increment value is useful when you don't want a gap in an AUTO_INCREMENT
column after a massive deletion.

For example, you got a lot of unwanted (advertisement) rows posted in your table, you deleted
them, and you want to fix the gap in auto-increment values. Assume the MAX value of
AUTO_INCREMENT column is 100 now. You can use the following to fix the auto-increment
value.

ALTER TABLE your_table_name AUTO_INCREMENT = 101;

Changing the type of a primary key column

ALTER TABLE fish_data.fish DROP PRIMARY KEY;
ALTER TABLE fish_data.fish MODIFY COLUMN fish_ id DECIMAL (20,0) NOT NULL PRIMARY KEY;

An attempt to modify the type of this column without first dropping the primary key would result in
an error.

Change column definition

The change the definition of a db column, the query below can be used for example, if we have
this db schema

users (
firstname wvarchar (20),
lastname varchar (20),
age char (2)

To change the type of age column from char t0 int, we use the query below:

ALTER TABLE users CHANGE age age tinyint UNSIGNED NOT NULL;
General format is:

ALTER TABLE table_name CHANGE column_name new_column_definition

Renaming a MySQL database

https://riptutorial.com/ 10

There is no single command to rename a MySQL database but a simple workaround can be used
to achieve this by backing up and restoring:

mysgladmin —uroot -p<password> create <new name>
mysgldump -uroot -p<password> —--routines <old name> | mysgl -uroot -pmypassword <new name>
mysgladmin -uroot -p<password> drop <old name>

Steps:

1. Copy the lines above into a text editor.

2. Replace all references t0 <o1d name>, <new name> and <password> (+ optionally root t0 USE @
different user) with the relevant values.

3. Execute one by one on the command line (assuming the MySQL "bin" folder is in the path

and entering "y" when prompted).
Alternative Steps:

Rename (move) each table from one db to the other. Do this for each table:

RENAME TABLE "<old db>". <name>" TO <new db>". <name>";

You can create those statements by doing something like

SELECT CONCAT ('RENAME TABLE old_db.', table_name, ' TO ',
'new_db."', table_name)
FROM information_schema.TABLES
WHERE table_schema = 'old_db';

Warning. Do not attempt to do any sort of table or database by simply moving files around on the
filesystem. This worked fine in the old days of just MylSAM, but in the new days of InnoDB and
tablespaces, it won't work. Especially when the "Data Dictionary" is moved from the filesystem into
system InnoDB tables, probably in the next major release. Moving (as opposed to just brorping) @
parTITION Of @n INNODB table requires using "transportable tablespaces”. In the near future, there
won't even be a file to reach for.

Swapping the names of two MySQL databases

The following commands can be used to swap the names of two MySQL databases (<av1> and
<db2>):

mysgladmin —-uroot -p<password> create swaptemp

mysgldump -uroot -p<password> —--routines <dbl> | mysgl -uroot -p<password> swaptemp
mysgladmin —-uroot -p<password> drop <dbl>

mysgladmin —-uroot -p<password> create <dbl>

mysgldump -uroot -p<password> —--routines <db2> | mysqgl -uroot -p<password> <dbl>
mysgladmin —-uroot -p<password> drop <db2>

mysgladmin —-uroot -p<password> create <db2>

mysgldump -uroot -p<password> —--routines swaptemp | mysgl —-uroot -p<password> <db2>
mysgladmin -uroot -p<password> drop swaptemp

https://riptutorial.com/ 11

Steps:

1. Copy the lines above into a text editor.

2. Replace all references to <ab1>, <db2> and <password> (+ optionally root to use a different
user) with the relevant values.

3. Execute one by one on the command line (assuming the MySQL "bin" folder is in the path

and entering "y" when prompted).
Renaming a MySQL table
Renaming a table can be done in a single command:

RENAME TABLE "“<old name>" TO "~<new name> ;

The following syntax does exactly the same:

ALTER TABLE ~<old name>" RENAME TO "~ <new name> ;

If renaming a temporary table, the arter T2BLE VErsion of the syntax must be used.
Steps:

1. Replace <o1d name> and <new name> in the line above with the relevant values. Note: If the
table is being moved to a different database, the dbname.tabiename Syntax can be used for <o1d
name> @NA/Or <new name>.

2. Execute it on the relevant database in the MySQL command line or a client such as MySQL
Workbench. Note: The user must have ALTER and DRORP privileges on the old table and
CREATE and INSERT on the new one.

Renaming a column in a MySQL table

Renaming a column can be done in a single statement but as well as the new name, the "column
definition" (i.e. its data type and other optional properties such as nullability, auto incrementing
etc.) must also be specified.

ALTER TABLE " <table name>" CHANGE "<old name>" '<new name> <column definition>;

Steps:

1. Open the MySQL command line or a client such as MySQL Workbench.

2. Run the following statement: suow crREATE TABLE <table name>; (replacing <table name> With the
relevant value).

3. Make a note of the entire column definition for the column to be renamed (i.e. everything that
appears after the name of the column but before the comma separating it from the next
column name).

4. Replace <old name>, <new name> aNd <column definition> IiN the line above with the relevant
values and then execute it.

https://riptutorial.com/ 12

Read ALTER TABLE online: https://riptutorial.com/mysql/topic/2627/alter-table

https://riptutorial.com/

13

https://riptutorial.com/mysql/topic/2627/alter-table

C_hapter 3: Arithmetic

Remarks

MySQL, on most machines, uses 64-bit IEEE 754 floating point arithmetic for its calculations.
In integer contexts it uses integer arithmetic.

» ranD () IS not a perfect random number generator. It is mainly used to quickly generate
pseudorandom numbers

Examples

Arithmetic Operators

MySQL provides the following arithmetic operators

T

SELECT 3+5; -> 8
+ Addition SELECT 3.5+2.5; -> 6.0
SELECT 3.5+2; -> H.5

- Subtraction SELECT 3-5; -> -2
* Multiplication SELECT 3 * 5; -> 15

SELECT 20 / 4; ->5
/ Division SELECT 355 / 113; -> 3.1416
seLECT 10.0 / 0; -> NULL

DIV Integer Division serecT 5 p1v 2; -> 2

SELECT 7 % 3; -> 1

SELECT 15 MOD 4 -> 3

SELECT 15 MOD -4 -> 3
% OF MOD Modulo

SELECT -15 MOD 4 -> -3

SELECT -15 MOD -4 -> -3

SELECT 3 MoD 2.5 -> 0.5

BIGINT

If the numbers in your arithmetic are all integers, MySQL uses the srcinT (Signed 64-bit) integer
data type to do its work. For example:

https://riptutorial.com/

https://en.wikipedia.org/wiki/IEEE_floating_point

select (1024 * 1024 * 1024 * 1024 *1024 * 1024) + 1 ->1,152,921,504,606,846,977
and

select (1024 * 1024 * 1024 * 1024 *1024 * 1024 * 1024 -> BIGINT OUt of range error

DOUBLE

If any numbers in your arithmetic are fractional, MySQL uses 64-bit IEEE 754 floating point
arithmetic. You must be careful when using floating point arithmetic, because many floating point
numbers are, inherently, approximations rather than exact values.

Mathematical Constants
Pi

The following returns the value of »1 formatted to 6 decimal places. The actual value is good to

DOUBLE;

SELECT PI(); —-> 3.141593

Trigonometry (SIN, COS)

Angles are in Radians, not Degrees. All computations are done in IEEE 754 64-bit floating point.
All floating point computations are subject to small errors, known as machine € (epsilon) errors, so
avoid trying to compare them for equality. There is no way to avoid these errors when using
floating point; they are built in to the technology.

If you use pectmar values in trigopnometric computations, they are implicitly converted to floating
point, and then back to decimal.

Sine
Returns the sine of a number X expressed in radians

SELECT SIN(PI()); -> 1.2246063538224e-16

Cosine

Returns the cosine of X when X is given in radians

SELECT COS(PI()); —-> -1

Tangent

https://riptutorial.com/ 15

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
http://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html
http://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon

Returns the tangent of a number X expressed in radians. Notice the result is very close to zero,
but not exactly zero. This is an example of machine €.

SELECT TAN(PI()); -> -1.2246063538224e-16

Arc Cosine (inverse cosine)

Returns the arc cosine of X if X is in the range -1 to 1

SELECT ACOS (1) ; -> 0
SELECT ACOS(1.01); —-> NULL

Arc Sine (inverse sine)

Returns the arc sine of X if X is in the range -1 to 1

SELECT ASIN(0.2); -> 0.20135792079033

Arc Tangent (inverse tangent)

aTan (x) returns the arc tangent of a single number.

SELECT ATAN(2); -> 1.1071487177941

aTaN2 (x, v) returns the arc tangent of the two variables X and Y. It is similar to calculating the arc
tangent of Y / X. But it is numerically more robust: t functions correctly when X is near zero, and
the signs of both arguments are used to determine the quadrant of the result.

Best practice suggests writing formulas to use aranz () rather than atan () wherever possible.

ATAN2 (1,1); -> 0.7853981633974483 (45 degrees)
ATAN2 (1,-1); -> 2.356194490192345 (135 degrees)
ATANZ2 (0, -1); -> PI (180 degrees) don't try ATAN(-1 / 0)... it won't work

Returns the cotangent of X

SELECT COT (12); -> -1.5726734063977

Conversion

SELECT RADIANS (90) -> 1.5707963267948966
SELECT SIN(RADIANS(90)) —-> 1

https://riptutorial.com/ 16

SELECT DEGREES (1), DEGREES(PI()) —-> 57.29577951308232, 180

Rounding (ROUND, FLOOR, CEIL)

Round a decimal number to an integer value

For exact numeric values (e.g. oectvar): If the first decimal place of a number is 5 or higher, this
function will round a number to the next integer away from zero. If that decimal place is 4 or lower,
this function will round to the next integer value closest to zero.

SELECT ROUND (4.51) -> 5
SELECT ROUND (4.49) -> 4
SELECT ROUND (-4.51) -> -5

For approximate numeric values (e.g. pouste): The result of the rounp () function depends on the C
library; on many systems, this means that rouxno () uses the round to the nearest even rule:

SELECT ROUND (45e-1) -> 4 —-- The nearest even value is 4
SELECT ROUND (55e-1) -> 6 —-- The nearest even value is 6

Round up a humber

To round up a number use either the cerr () or cerrine () function

SELECT CEIL(1.23) -> 2
SELECT CEILING(4.83) —-> 5

Round down a number

To round down a number, use the rrLoor () function
SELECT FLOOR(1.99) -—> 1
FLOOR and CEIL go toward / away from -infinity:

SELECT FLOOR(-1.01), CEIL(-1.01) -> -2 and -1
SELECT FLOOR(-1.99), CEIL(-1.99) -> -2 and -1

Round a decimal number to a specified number of decimal
places.

SELECT ROUND (1234.987, 2) -> 1234.99
SELECT ROUND (1234.987, -2) —-> 1200

https://riptutorial.com/ 17

The discussion of up versus down and "5" applies, too.
Raise a humber to a power (POW)
To raise a number x to a power v, use either the row () or rower () functions

SELECT POW(2,2); => 4
SELECT POW(4,2); => 16

Square Root (SQRT)
Use the sort () function. If the number is negative, nurt will be returned

SELECT SQRT (16); -> 4
SELECT SQRT (-3); —-> NULL

Random Numbers (RAND)

Generate a random number

To generate a pseudorandom floating point number between o and 1, use the ranp () function

Suppose you have the following query

SELECT i, RAND() FROM t;

This will return something like this

oy

1 0.6191438870682

2 0.93845168309142

3 0.83482678498591

Random Number in a range

To generate a random number in the range a <= n <= b, you can use the following formula

FLOOR(a + RAND() * (b — a + 1))

For example, this will generate a random number between 7 and 12

SELECT FLOOR(7 + (RAND() * 6));

https://riptutorial.com/

A simple way to randomly return the rows in a table:
SELECT * FROM tbl ORDER BY RAND() ;

These are pseudorandom numbers.

The pseudorandom number generator in MySQL is not cryptographically secure. That is, if you
use MySQL to generate random numbers to be used as secrets, a determined adversary who
knows you used MySQL will be able to guess your secrets more easily than you might believe.

Absolute Value and Sign (ABS, SIGN)
Return the absolute value of a number

SELECT ABS (2); -> 2
SELECT ABS (-46); —> 46

The sign of a number compares it to 0.

-1 n<0 SELECT SIGN(42); -> 1
0 n=0 SELECT SIGN(0); -> 0
1 n>0 SELECT SIGN(-3); -> -1
SELECT SIGN(-423421); -> -1

Read Arithmetic online: https://riptutorial.com/mysql/topic/4516/arithmetic

https://riptutorial.com/

19

https://riptutorial.com/mysql/topic/4516/arithmetic

C_hapter 4: Backticks

Examples

Backticks usage

There are many examples where backticks are used inside a query but for many it's still unclear
when or where to use backticks .

Backticks are mainly used to prevent an error called "MySQL reserved word". When making a
table in PHPmyAdmin you are sometimes faced with a warning or alert that you are using a "
MySQL reserved word".

For example when you create a table with a column named "group" you get a warning. This is
because you can make the following query:

SELECT student_name, AVG(test_score) FROM student GROUP BY group

To make sure you don't get an error in your query you have to use backticks so your query
becomes:

SELECT student_name, AVG (test_score) FROM student GROUP BY “group

Table

Not only column names can be surrounded by backticks, but also table names. For example when
you need to sorn multiple tables.

SELECT “users . username , groups . group FROM " users’

Easier to read

As you can see using backticks around table and column names also make the query easier to
read.

For example when you are used to write querys all in lower case:

select student_name, AVG(test_score) from student group by group
select "student_name’, AVG(test_score’) from "student® group by "group’

Please see the MySQL Manual page entitled Keywords and Reserved Words. The ones with an
(R) are Reserved Words. The others are merely Keywords. The Reserved require special caution.

Read Backticks online: https://riptutorial.com/mysql/topic/5208/backticks

https://riptutorial.com/ 20

https://dev.mysql.com/doc/refman/5.5/en/keywords.html
https://riptutorial.com/mysql/topic/5208/backticks

Syntax

* mysqgldump -u [username] -p[password] [other options] db_name > dumpFileName.sql /// To
Backup single database

* mysqldump -u [username] -p[password] [other options] db_name [tbl_name1 tbl_name2
tbl_name2 ...] > dumpFileName.sql /// To Backup one or more tables

* mysqldump -u [username] -p[password] [other options] --databases db_name1 db_name2
db_name3 ... > dumpFileName.sql /// To Backup one or more complete databases

» mysqgldump -u [username] -p[password] [other options] --all-databases > dumpFileName.sql
/// To Backup entire MySQL server

Parameters

7h(77host)

—u (77user)

-p (__

password)

—-—add-drop-—
database

——add-drop-—
table

——no-create-
db

—t(——no—

create—info)

—d(——no—
data)

Server login options

Host (IP address or hostname) to connect to. Default is 1ocainost (127.0.0.1)
Example: -h localhost

MySQL user

MySQL password. Important: When using -p, there must not be a space
between the option and the password. Example: —pMypassword

Dump options

Add a pror paTarase statement before each create patarase statement. Useful if
you want to replace databases in the server.

Add a pror TtaBLE Statement before each create TasLr statement. Useful if you
want to replace tables in the server.

Suppress the create patasase statements in the dump. This is useful when
you're sure the database(s) you're dumping already exist(s) in the server
where you'll load the dump.

Suppress all create TaBLE Statements in the dump. This is useful when you
want to dump only the data from the tables and will use the dump file to
populate identical tables in another database / server.

Do not write table information. This will only dump the create T2BLE Statements.
Useful for creating "template" databases

https://riptutorial.com/ 21

= (- Include stored procedures / functions in the dump.

routines)

K (— Disable keys for each table before inserting the data, and enable keys after the
disable-keys data is inserted. This speeds up inserts only in MylISAM tables with non-unique
) indexes.

Remarks

The output of a nysq1dump Operation is a lightly commented file containing sequential SQL
statements that are compatible with the version of MySQL utilities that was used to generate it
(with attention paid to compatibility with previous versions, but no guarantee for future ones).
Thus, the restoration of a nysq1dumped database comprises execution of those statements.
Generally, this file

* propS the first specified table or view

+ creaTeS that table or view

 For tables dumped with data (i.e. without the --no-data option)
> rocks the table

o 1nsertS all of the rows from the original table in one statement
® UNLOCK TABLES

» Repeats the above for all other tables and views
* prorS the first included routine

» createS that routine

» Repeats the same for all other routines

The presence of the pror before creatr for each table means that if the schema is present, whether
or not it is empty, using a nysqidump file for its restoration will populate or overwrite the data therein.

Examples

Creating a backup of a database or table
Create a snapshot of a whole database:

mysgldump [options] db_name > filename.sql
Create a snapshot of multiple databases:

mysgldump [options] —--databases db_namel db_name2 ... > filename.sqgl
mysgldump [options] —-—-all-databases > filename.sqgl

Create a snapshot of one or more tables:

mysgldump [options] db_name table_name... > filename.sqgl

https://riptutorial.com/ 22

Create a snapshot excluding one or more tables:

mysgldump [options] db_name —--ignore-table=tbll --ignore-table=tbl2 ... > filename.sql
The file extension .sq1 is fully a matter of style. Any extension would work.

Specifying username and password

> mysgldump -u username -p [other options]
Enter password:

If you need to specify the password on the command line (e.g. in a script), you can add it after the
-p option without a space:

> mysqgldump -u username -ppassword [other options]

If you password contains spaces or special characters, remember to use escaping depending on
your shell / system.

Optionally the extended form is:

> mysgldump --user=username --password=password [other options]

(Explicity specifying the password on the commandline is Not Recommended due to security
concerns.)

Restoring a backup of a database or table
mysgl [options] db_name < filename.sqgl

Note that:

* db_name Needs to be an existing database;

 your authenticated user has sufficient privileges to execute all the commands inside your
filename.sql,

* The file extension .sq1 is fully a matter of style. Any extension would work.

* You cannot specify a table name to load into even though you could specify one to dump
from. This must be done within fi1ename.sq1.

Alternatively, when in the MySQL Command line tool, you can restore (or run any other script) by
using the source command:

source filename.sqgl

or

\. filename.sqgl

https://riptutorial.com/ 23

mysqldump from a remote server with compression

In order to use compression over the wire for a faster transfer, pass the —-compress option to
mysgldump. Example:

mysgldump -h db.example.com -u username -p ——-compress dbname > dbname.sql

Important: If you don't want to lock up the source db, you should also include --1ock-tables=false.
But you may not get an internally consistent db image that way.

To also save the file compressed, you can pipe t0 gzip.

mysgldump -h db.example.com -u username -p —--compress dbname | gzip --stdout > dbname.sqgl.gz

restore a gzipped mysqldump file without uncompressing
gunzip -c¢ dbname.sgl.gz | mysgl dbname -u username -p

Note: -c means write output to stdout.
Backup direct to Amazon S3 with compression

If you wish to make a complete backup of a large MySq|l installation and do not have sufficient
local storage, you can dump and compress it directly to an Amazon S3 bucket. It's also a good
practice to do this without having the DB password as part of the command:

mysgldump -u root -p —--host=localhost --opt —--skip-lock-tables --single-transaction \
—--verbose —--hex-blob —--routines --triggers --all-databases |
gzip -9 | s3cmd put - s3://s3-bucket/db-server—-name.sql.gz

You are prompted for the password, after which the backup starts.

Tranferring data from one MySQL server to another

If you need to copy a database from one server to another, you have two options:
Option 1:

1. Store the dump file in the source server
2. Copy the dump file to your destination server
3. Load the dump file into your destination server

On the source server:
mysgldump [options] > dump.sqgl

On the destination server, copy the dump file and execute:

https://riptutorial.com/ 24

mysqgl [options] < dump.sqgl

Option 2:

If the destination server can connect to the host server, you can use a pipeline to copy the
database from one server to the other:

On the destination server

mysgldump [options to connect to the source server] | mysqgl [options]

Similarly, the script could be run on the source server, pushing to the destination. In either case, it
is likely to be significantly faster than Option 1.

Backup database with stored procedures and functions

By default stored procedures and functions or not generated by mysqidump, you will need to add the
parameter —-routines (Or -Rr):

mysgldump -u username -p —-R db_name > dump.sqgl

When using - -out ines the creation and change time stamps are not maintained, instead you
should dump and reload the contents of mysqi.proc.

Read Backup using mysgldump online: https://riptutorial.com/mysql/topic/604/backup-using-
mysqldump

https://riptutorial.com/ 25

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html#option_mysqldump_routines
https://riptutorial.com/mysql/topic/604/backup-using-mysqldump
https://riptutorial.com/mysql/topic/604/backup-using-mysqldump

C_hapter 6: Change Password

Examples

Change MySQL root password in Linux

To change MySQL's root user password:
Step 1: Stop the MySQL server.
* in Ubuntu or Debian:
sudo /etc/init.d/mysql stop

* in CentOS, Fedora or Red Hat Enterprise Linux:
sudo /etc/init.d/mysqgld stop

Step 2: Start the MySQL server without the privilege system.

sudo mysgld_safe --skip-grant-tables &

or, if mysqld_safe is unavailable,

sudo mysqgld —--skip-grant-tables &

Step 3: Connect to the MySQL server.
mysgl —u root

Step 4: Set a new password for root user.
5.7

FLUSH PRIVILEGES;
ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password';
FLUSH PRIVILEGES;

exit;
5.7

FLUSH PRIVILEGES;
SET PASSWORD FOR 'root'@'localhost' = PASSWORD ('new_password');
FLUSH PRIVILEGES;

exit;
Note: The arter user Syntax was introduced in MySQL 5.7.6.

Step 5: Restart the MySQL server.

+ in Ubuntu or Debian:
sudo /etc/init.d/mysql stop

https://riptutorial.com/

sudo /etc/init.d/mysgl start

+ in CentOS, Fedora or Red Hat Enterprise Linux:
sudo /etc/init.d/mysqgld stop
sudo /etc/init.d/mysgld start

Change MySQL root password in Windows

When we want to change root password in windows, We need to follow following steps :
Step 1 : Start your Command Prompt by using any of below method :
Perss crt1+r Or GOt start Menu > run @and then type cma and hit enter

Step 2 : Change your directory to where mysor is installed, In my case it's
C:\> cd C:\mysql\bin

Step 3 : Now we need to start mysq1 command prompt
C:\mysql\bin> mysql -u root mysqgl

Step 4 : Fire query to change root password

mysgl> SET PASSWORD FOR root@localhost=PASSWORD ('my_new_password');

Process

—

. Stop the MySQL (mysqld) server/daemon process.

. Start the MySQL server process the --skip-grant-tables option so that it will not prompt for a
paSSVVOFd:mysqld_safe —-—-skip-grant-tables &

3. Connect to the MySQL server as the root user: mysql -u root

. Change password:

[\

I

(5.7.6 and newer): ALTER USER 'root'@'localhost' IDENTIFIED BY 'new-password';

(5.7.5 and older, or MariaDB): seT paSSWORD FOR 'root'@'localhost' = PASSWORD ('new-
password); flush privileges; quit;

5. Restart the MySQL server.
Note: this will work only if you are physically on the same server.
Online Doc: http://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html

Read Change Password online: https://riptutorial.com/mysql/topic/2761/change-password

https://riptutorial.com/ 27

http://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://riptutorial.com/mysql/topic/2761/change-password

C_hapter 7: Character Sets and Collations

Examples
Declaration

CREATE TABLE foo (...
name CHARACTER SET utf8mb4
o)

Connection

Vital to using character sets is to tell the MySQL-server what encoding the client's bytes are. Here
is one way:

SET NAMES utf8mb4;

Each language (PHP, Python, Java, ...) has its own way the it usually preferable to ser nawmEs.

For example: seT names utfsmb4, together with a column declared cuaracTer seET 1atini -- this will
convert from latin1 to utf8mb4 when 1nserTing and convert back when serecting.

Which CHARACTER SET and COLLATION?

There are dozens of character sets with hundreds of collations. (A given collation belongs to only
one character set.) See the output of skow corrarzon;.

There are usually only 4 cuaracter seTs that matter:

ascii -- basic 7-bit codes.

latinl -- ascii, plus most characters needed for Western European languages.

utf8 —-- the 1-, 2-, and 3-byte subset of utf8. This excludes Emoji and some of Chinese.
utf8mb4 -- the full set of UTF8 characters, covering all current languages.

All include English characters, encoded identically. utf8 is a subset of utf8mb4.
Best practice...

» Use utf8mb4 for any text or varcuar column that can have a variety of languages in it.
» Use ascii (latin1 is ok) for hex strings (UUID, MD5, etc) and simple codes (country_code,
postal_code, etc).

utf8mb4 did not exist until version 5.5.3, so utf8 was the best available before that.
Outside of MySQL, "UTF8" means the same things as MySQL's utf8mb4, not MySQL's utf8.

Collations start with the charset name and usually end with _ci for "case and accent insensitive" or

https://riptutorial.com/ 28

_bin for "simply compare the bits.

The 'latest’ utf8mb4 collation is ut femb4_unicode_520_ci, based on Unicode 5.20. If you are working
with a single language, you might want, say, utfsmba_polish_ci, Which will rearrange the letters
slightly, based on Polish conventions.

Setting character sets on tables and fields

You can set a character set both per table, as well as per individual field using the caaracter seT
and cuarseT statements:

CREATE TABLE Address (

"AddressID® INTEGER NOT NULL PRIMARY KEY,
“Street’ VARCHAR (80) CHARACTER SET ASCII,
“City’ VARCHAR (80) ,

‘Country’ VARCHAR (80) DEFAULT "United States",
"Active’ BOOLEAN DEFAULT 1,

) Engine=InnoDB default charset=UTFS§;

city and country Will use urrs, as we set that as the default character set for the table. street On
the other hand will use asct1, as we've specifically told it to do so.

Setting the right character set is highly dependent on your dataset, but can also highly improve
portability between systems working with your data.

Read Character Sets and Collations online: https://riptutorial.com/mysql/topic/4569/character-sets-
and-collations

https://riptutorial.com/ 29

http://dev.mysql.com/doc/refman/5.7/en/charset-general.html
https://riptutorial.com/mysql/topic/4569/character-sets-and-collations
https://riptutorial.com/mysql/topic/4569/character-sets-and-collations

C_hapter 8: Clustering

Examples

Disambiguation

"MySQL Cluster" disambiguation...

» NDB Cluster -- A specialized, mostly in-memory, engine. Not widely used.
» Galera Cluster aka Percona XtraDB Cluster aka PXC aka MariaDB with Galera. -- A very
good High Availability solution for MySQL; it goes beyond Replication.

See individual pages on those variants of "Cluster".
For "clustered index" see page(s) on privarY KEY.

Read Clustering online: https://riptutorial.com/mysql/topic/5130/clustering

https://riptutorial.com/

30

https://riptutorial.com/mysql/topic/5130/clustering

C_hapter 9: Comment Mysql

Remarks

The -- style of comment, which requires a trailing space, differs in behavior from the SQL
standard, which does not require the space.

Examples

Adding comments

There are three types of comment:

This comment continues to the end of line

—— This comment continues to the end of line

/* This is an in-line comment */

/*
This is a
multiple-line comment

*/
Example:

SELECT * FROM tl; -- this is comment

CREATE TABLE stack(
/*id_user int,
username varchar (30),
password varchar (30)
=/

id int

)i

The -- method requires that a space follows the -- before the comment begins, otherwise it will be
interpreted as a command and usually cause an error.

#This comment works
/*This comment works.*/
——This comment does not.

Commenting table definitions

CREATE TABLE menagerie.bird (
bird_id INT NOT NULL AUTO_INCREMENT,

species VARCHAR (300) DEFAULT NULL COMMENT 'You can include genus, but never subspecies.',

INDEX idx_species (species) COMMENT

'We must search on species often.',

https://riptutorial.com/

31

https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.5/en/ansi-diff-comments.html
https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.5/en/ansi-diff-comments.html

PRIMARY KEY (bird_id)
) ENGINE=InnoDB COMMENT 'This table was inaugurated on February 10th.';

Using an = after comvent is optional. (Official docs)

These comments, unlike the others, are saved with the schema and can be retrieved via szow

CREATE TABLE Of from information_schema.

Read Comment Mysql online: https://riptutorial.com/mysql/topic/2337/comment-mysq|

https://riptutorial.com/

32

http://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://riptutorial.com/mysql/topic/2337/comment-mysql

C_hapter 10: Configuration and tuning

Remarks

Configuration happens in one of 3 ways:

« command line options
* the my.cne configuration file
« setting variables from within the server

Command Line options takes the form mysgld --long-parameter—-name=value --another-parameter.
The same parameters can be placed in the ny.cont configuration file. Some parameters are
configurable using system variables from within MySQL. Check the official documentation for a
complete list of parameters.

Variables can have dash - or underscore _. Spaces may exist around the =. Large numbers can
be suffixed by «, v, ¢ for kilo-, mega-, and giga-. One setting per line.

Flags: Usually on and 1 are synonymous, ditto for orr and o. Some flags have nothing after them.

When placing the settings in ny.cnf, all settings for the server must be in the mysq141 section, so
don't blindly add settings to the end of the file. (Note: For tools that allow multiple mysqgl instances
to share one my.cnf, the section names may be different.)

Examples

InnoDB performance

There are hundreds of settings that can be placed in my.cnf. For the 'lite' user of MySQL, they
won't matter as much.

Once your database becomes non-trivial, it is advisable to set the following parameters:

innodb_buffer pool_size

This should be set to about 70% of available RAM (if you have at least 4GB of RAM; a smaller
percentage if you have a tiny VM or antique machine). The setting controls the amount of cache
used by the InnoDB ENGINE. Hence, it is very important for performance of InnoDB.

Parameter to allow huge data to insert

If you need to store images or videos in the column then we need to change the value as needed
by your application

max_allowed_packet = 10M

https://riptutorial.com/ 33

Mis Mb, G in Gb, Kin Kb
Increase the string limit for group_concat

group_concat IS Used to concatenate non-null values in a group. The maximum length of the
resulting String can be set USing the group_concat_max_len Option:

SET [GLOBAL | SESSION] group_concat_max_len = val;

Setting the crosaw variable will ensure a permanent change, whereas setting the sesston variable
will set the value for the current session.

Minimal InnoDB configuration

This is a bare minimum setup for MySQL servers using InnoDB tables. Using InnoDB, query
cache is not required. Reclaim disk space when a table or database is orored. If you're using
SSDs, flushing is a redundant operation (SDDs are not sequential).

default_storage_engine = InnoDB
query_cache_type = 0
innodb_file_per_ table =1
innodb_flush_neighbors = 0

Concurrency

Make sure we can create more than than the default 4 threads by setting
innodb_thread_concurrency tO infinity (0); this lets InnoDB decide based on optimal execution.

innodb_thread_concurrency = 0
innodb_read_io_threads = 64
innodb_write_io_threads = 64

Hard drive utilization

Set the capacity (normal load) and capacity_max (absolute maximum) of IOPS for MySQL. The
default of 200 is fine for HDDs, but these days, with SSDs capable of thousands of IOPS, you are
likely to want to adjust this number. There are many tests you can run to determine IOPS. The
values above should be nearly that limit if you are running a dedicated MySQL server. If you are
running any other services on the same machine, you should apportion as appropriate.

innodb_io_capacity = 2500
innodb_io_capacity_max = 3000

RAM utilization

Set the RAM available to MySQL. Whilst the rule of thumb is 70-80%, this really depends on
whether or not your instance is dedicated to MySQL, and how much RAM is available. Don't waste
RAM (i.e. resources) if you have a lot available.

https://riptutorial.com/ 34

innodb_buffer pool_size = 10G

Secure MySQL encryption

The default encryption aes-128-cco uses Electronic Codebook (ECB) mode, which is insecure and
should never be used. Instead, add the following to your configuration file:

block_encryption_mode = aes-256-cbc

Read Configuration and tuning online: https://riptutorial.com/mysql/topic/3134/configuration-and-
tuning

https://riptutorial.com/ 35

https://riptutorial.com/mysql/topic/3134/configuration-and-tuning
https://riptutorial.com/mysql/topic/3134/configuration-and-tuning

C_hapter 11: Connecting with UTF-8 Using

Various Programming language.

Examples

Python

1st or 2nd line in source code (to have literals in the code utf8-encoded):
—*- coding: utf-§ —*-

Connection:

db = MySQLdb.connect (host=DB_HOST, user=DB_USER, passwd=DB_PASS, db=DB_NAME,
charset="utf8mb4", use_unicode=True)

For web pages, one of these:

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

PHP
In php.ini (this is the default after PHP 5.6):

default_charset UTF-8

When building a web page:

header ('Content-type: text/plain; charset=UTF-8');

When connecting to MySQL:

(for mysqgl:) Do not use the mysgl_* API!
(for mysqgli:) Smysgli_obj->set_charset ('utf8mb4"');
(for PDO:) Sdb = new PDO('dblib:host=host;dbname=db;charset=utf8', Suser, Spwd);

In code, do not use any conversion routines.

For data entry,

<form accept-charset="UTF-8">

For JSON, to avoid \uxxxx:

https://riptutorial.com/

36

St = Json_encode ($s, JSON_UNESCAPED_UNICODE) ;

Read Connecting with UTF-8 Using Various Programming language. online:
https://riptutorial.com/mysql/topic/7332/connecting-with-utf-8-using-various-programming-
language-

https://riptutorial.com/

37

https://riptutorial.com/mysql/topic/7332/connecting-with-utf-8-using-various-programming-language-
https://riptutorial.com/mysql/topic/7332/connecting-with-utf-8-using-various-programming-language-

C_hapter 12: Converting from MyISAM to
InnoDB

Examples

Basic conversion

ALTER TABLE foo ENGINE=InnoDB;
This converts the table, but does not take care of any differences between the engines. Most
differences will not matter, especially for small tables. But for busier tables, other considerations
should be considered. Conversion considerations

Converting All Tables in one Database

To easily convert all tables in one database, use the following:

SET @DB_NAME = DATABASE () ;

SELECT CONCAT ('ALTER TABLE "', table_name, '~ ENGINE=InnoDB;') AS sgl_statements
FROM information_schema.tables

WHERE table_schema = @DB_NAME

AND "ENGINE®W = 'MyISAM'

AND "TABLE_TYPE® = 'BASE TABLE';

NOTE: You should be connected to your database for pataease () function to work,
otherwise it will return ~urt. This mostly applies to standard mysql client shipped with
server as it allows to connect without specifying a database.

Run this SQL statement to retrieve all the vy1sauv tables in your database.
Finally, copy the output and execute SQL queries from it.

Read Converting from MylISAM to InnoDB online:
https://riptutorial.com/mysql/topic/3135/converting-from-myisam-to-innodb

https://riptutorial.com/

38

http://mysql.rjweb.org/doc.php/myisam2innodb
https://riptutorial.com/mysql/topic/3135/converting-from-myisam-to-innodb

C_hapter 13: Create New User

Remarks

To view a List of MySQL Users, we use the following command :

SELECT User,Host FROM mysqgl.user;

Examples

Create a MySQL User

For creating new user, We need to follow simple steps as below :

Step 1: Login to mysor as root
$ mysgl -u root -p
Step 2 : We will see mysqgl command prompt

mysqgl> CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY 'test_password';

Here, We have successfully created new user, But this user won't have any permissions, SO to
assign permissions t0 user use following command :

mysgl> GRANT ALL PRIVILEGES ON my_db.* TO 'my_new_user'@'localhost' identified by
'my_password';

Specify the password
The basic usage is:

mysgl> CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY 'test_password';

However for situations where is not advisable to hard-code the password in cleartext it is also
possible to specify directly, using the directive rassworp, the hashed value as returned by the
PASSWORD () function:

mysqgl> select PASSWORD ('test_password'); —-- returns *4414E26EDED6D661B5386813EBBA95065DBC4728
mysqgl> CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY PASSWORD
'*4414E26EDED6D661B5386813EBBA95065DBC4728";

Create new user and grant all priviliges to schema

https://riptutorial.com/ 39

grant all privileges on schema_name.* to 'new_user_name'@'S$' identified by 'newpassword';
Attention: This can be used to create new root user

Renaming user
rename user 'user'Q@'$' to 'new_name Q@'S$S';

If you create a user by mistake, you can change his name

Read Create New User online: https://riptutorial.com/mysql/topic/3508/create-new-user

https://riptutorial.com/

40

https://riptutorial.com/mysql/topic/3508/create-new-user

C_hapter 14: Creating databases

Syntax

 CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name [create_specification] /// To
create database
« DROP {DATABASE | SCHEMA} [IF EXISTS] db_name /// To drop database

Parameters

N
CREATE : .
DATABASE Creates a database with the given name

CREATE SCHEMA This is a synonym for create DATABASE
IF NOT EXISTS Used to avoid execution error, if specified database already exists

create_specification Options specify database characteristics such as

create_specification _
—SP cuaracTer sET and coviaTe(database collation)

Examples

Create database, users, and grants

Create a DATABASE. Note that the shortened word SCHEMA can be used as a synonym.
CREATE DATABASE Baseball; ——- creates a database named Baseball

If the database already exists, Error 1007 is returned. To get around this error, try:

CREATE DATABASE IF NOT EXISTS Baseball;

Similarly,
DROP DATABASE IF EXISTS Baseball; -- Drops a database if it exists, avoids Error 1008
DROP DATABASE xyz; —-- If xyz does not exist, ERROR 1008 will occur

Due to the above Error possibilities, DDL statements are often used with 1r ex1sTs.

One can create a database with a default CHARACTER SET and collation. For example:

CREATE DATABASE Baseball CHARACTER SET utf8 COLLATE utf8_general_cij;

https://riptutorial.com/ 41

SHOW CREATE DATABASE Baseball;

o —_— +
| Database | Create Database |
o —_— +
| Baseball | CREATE DATABASE “Baseball® /*!40100 DEFAULT CHARACTER SET utf8 */ |
o —_— +

See your current databases:

SHOW DATABASES;

| information_schema |
| ajax_stuff |
| Baseball |

Set the currently active database, and see some information:

USE Baseball; —-- set it as the current database

SELECT QQRcharacter_set_database as cset,@@collation_database as col;
+———— o —— +

| cset | col [

+———— o —— +

| utf8 | utf8_general ci |

+———— o —— +

The above shows the default CHARACTER SET and Collation for the database.

Create a user:

CREATE USER 'Johnl23'Q@'S$' IDENTIFIED BY 'OpenSesame';

The above creates a user John123, able to connect with any hostname due to the ¢ wildcard. The
Password for the user is set to 'OpenSesame’ which is hashed.

And create another:

CREATE USER 'John456'@'%' IDENTIFIED BY 'somePassword';

Show that the users have been created by examining the special mysq1 database:

SELECT user,host,password from mysqgl.user where user in ('Johnl23', 'John456"');
fo———— e o +
| user | host | password |
fo———— e o +
| Johnl23 | % | *E6531C342ED87 .t iiiiiiinennnnnnn |
| John4d56 | % | *BO4AELL1FAAAEOA . . ittt it teeeeennns |
fo———— e o +

Note that at this point, the users have been created, but without any permissions to use the

https://riptutorial.com/ 42

Baseball database.

Work with permissions for users and databases. Grant rights to user John123 to have full
privileges on the Baseball database, and just SELECT rights for the other user:

GRANT ALL ON Baseball.* TO 'Johnl23'Q@'S%';
GRANT SELECT ON Baseball.* TO 'John456'Q@'%';

Verify the above:

SHOW GRANTS FOR 'Johnl23'Q@'S%';

| GRANT USAGE ON *.* TO 'Johnl23'@'S%' IDENTIFIED BY PASSWORD '*E6531C342ED87

.................... |
| GRANT ALL PRIVILEGES ON "baseball’ .* TO 'Johnl23'Q'S'

| GRANT USAGE ON *.* TO 'John456'@'%' IDENTIFIED BY PASSWORD '*BO4E11FAAAEO9A

.................... |
| GRANT SELECT ON “baseball’ .* TO 'John456'Q@'S%’

Note that the crant usace that you will always see means simply that the user may login. That is all
that that means.

MyDatabase

You must create your own database, and not use write to any of the existing databases. This is
likely to be one of the very first things to do after getting connected the first time.

CREATE DATABASE my_db;

USE my_db;

CREATE TABLE some_table;
INSERT INTO some_table ...;

You can reference your table by qualifying with the database name: ny_db. some_table.

System Databases

https://riptutorial.com/ 43

The following databases exist for MySQL's use. You may read (serect) them, but you must not
write (1nsert/uppate/pELETE) the tables in them. (There are a few exceptions.)

* mysql -- repository for crant info and some other things.

* information_schema -- I he tables here are 'virtual' in the sense that they are actually
manifested by in-memory structures. Their contents include the schema for all tables.

* performance_schema -- 77 [please accept, then edit]

 others?? (for MariaDB, Galera, TokuDB, etc)

Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can
begin using it. Otherwise, you need to create it yourself:

mysqgl> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer
to databases and tables using the same lettercase throughout a given query. However, for a
variety of reasons, the recommended best practice is always to use the same lettercase that was
used when the database was created.)

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this statement:

mysgl> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example.
Alternatively, you can select the database on the command line when you invoke mysql. Just
specify its name after any connection parameters that you might need to provide. For example:

shell> mysgl -h host -u user -p menagerie
Enter password: ****x*xx*

Read Creating databases online: https://riptutorial.com/mysql/topic/600/creating-databases

https://riptutorial.com/ 44

https://riptutorial.com/mysql/topic/600/creating-databases

Examples

Customize the MySQL PS1 with current database
In the .bashrc or .bash_profile, adding:

export MYSQL_PS1="\u@\h [\d]>"

make the MySQL client PROMPT show current user@host [database].

[23:86:51] wenzhongBmusicforever:
% mysal -urcot data
Reading table information for completion of table and column names
You can turn off this fegture to get a quicker startup with -A

Welcome to the MySQL monitor. ~Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.6.23 Homebrew

Copyright (c) 2000, 2015, Oracle and/or its affilictes. All rights reserved.
Oracle is a registered trodemark of Oracle Corporation andfor its

affiliates. Other names may be trademarks of their respective
OoWners.,

Type 'help;' or 'Sh' for help. Type "\c¢' to clear the current input statement.

root@localhost [dutn1>l

Custom PS1 via MySQL configuration file
IN nysqid.cnt Or equivalent:

[mysqgl]
prompt = '\u@\h [\d]> '

This achieves a similar effect, without having to deal with .vashrc's.

https://riptutorial.com/

45

http://i.stack.imgur.com/lHXU6.png
https://riptutorial.com/mysql/topic/5795/customize-ps1

C_hapter 16: Data Types

Examples
Implicit / automatic casting
select '123' * 2;

To make the multiplication with - MySQL automatically converts the string 123 into a number.
Return value:
246

The conversion to a number starts from left to right. If the conversion is not possible the result is o

select '"123ABC' * 2

Return value:

246

select 'ABC123' * 2

Return value:

0
VARCHAR(255) -- or not

Suggested max len

First, | will mention some common strings that are always hex, or otherwise limited to ASCII. For
these, you should specify caaracter set ascii (1atini iS OK) so that it will not waste space:

UUID CHAR(36) CHARACTER SET ascii —-- or pack into BINARY (16)

country_code CHAR(2) CHARACTER SET ascii

ip_address CHAR(39) CHARACTER SET ascii —-- or pack into BINARY (16)

phone VARCHAR (20) CHARACTER SET ascii -- probably enough to handle extension
postal_code VARCHAR(20) CHARACTER SET ascii —-- (not 'zip_code') (don't know the max

city VARCHAR(100) -- This Russian town needs 91:
Poselok Uchebnogo Khozyaystva Srednego Professionalno-Tekhnicheskoye Uchilishche Nomer
Odin
country VARCHAR (50) —-- probably enough
name VARCHAR (64) —-- probably adequate; more than some government agencies allow

Why not simply 255? There are two reasons to avoid the common practice of using (255) for

https://riptutorial.com/ 46

everything.

When a complex serect needs to create temporary table (for a subquery, unton, crour By,
etc), the preferred choice is to use the vemory engine, which puts the data in RAM. But
varcHARs are turned into cuar in the process. This makes varcHAR (255) CHARACTER SET utf8mb4
take 1020 bytes. That can lead to needing to spill to disk, which is slower.

In certain situations, InnoDB will look at the potential size of the columns in a table and
decide that it will be too big, aborting a creaTe TaABLE.

VARCHAR versus TEXT

Usage hints for »texT, cuar, and varcuar, plus some Best Practice:

Never use TINYTEXT.

Almost never use cuzr -- it is fixed length; each character is the max length of the craracter
seT (g, 4 bytes/character for utf8mb4).

With cuar, USe craracTER SET ascii Unless you know otherwise.

varcHAR (n) Will truncate at n characters; text will truncate at some number of bytes. (But, do
you want truncation?)

~texT may slow down complex serects due to how temp tables are handled.

INT as AUTO_INCREMENT

Any size of tnt may be used for auto_1ncrevENT. UNSTGNED IS @lways appropriate.

Keep in mind that certain operations "burn" auro_increvent ids. This could lead to an unexpected
gap. Examples: mnserT 16N0RE @Nd rEpLace. They may preallocate an id before realizing that it won't
be needed. This is expected behavior and by design in the InnoDB engine and should not
discourage their use.

Others

There is already a separate entry for "FLOAT, DOUBLE, and DECIMAL" and "ENUM". A single
page on datatypes is likely to be unwieldy -- | suggest "Field types" (or should it be called
"Datatypes"?) be an overview, then split into these topic pages:

INTs

FLOAT, DOUBLE, and DECIMAL

Strings (CHARs, TEXT, etc)

BINARY and BLOB

DATETIME, TIMESTAMP, and friends

ENUM and SET

Spatial data

JSON type (MySQL 5.7.8+)

How to represent Money, and other common 'types' that need shoehorning into existing
datatypes

Where appropriate, each topic page should include, in addition to syntax and examples:

https://riptutorial.com/

47

http://www.riptutorial.com/mysql/topic/2985/json

« Considerations when ALTERing

» Size (bytes)

+ Contrast with non-MySQL engines (low priority)

» Considerations when using the datatype in a PRIMARY KEY or secondary key
 other Best Practice

 other Performance issues

(I assume this "example" will self-distruct when my suggestions have been satisfied or vetoed.)

Introduction (numeric)

MySQL offers a number of different numeric types. These can be broken down into

T

Integer Types INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
Fixed Point Types DECIMAL, NUMERIC
Floating Point Types rroaT, bousLE

Bit Value Type BIT

Integer Types

Minimal unsigned value is always 0.

Tvbe Storage | Minimum Value Maximum Value Maximum Value
yp (Bytes) | (Signed) (Signed) (Unsigned)

TINYINT 27 1 28 1
-128 127 255
_215 215_1 216_1
SMALLINT 2
-32,768 32,767 65,535
_223 223_1 224_1
SEMUII | -8.388,608 8,388,607 16,777,215
_231 231_1 232_1
s 4 -2.147 483,648 D 147,483,647 4,294,967,295
2% 2631 2641
Fem € - 9,223.372,036,854,775,807 18.446,744.,073,709 5
9,223 372,036,854,775,808 <02/ S090,89%, 119, FRHELIRASH ey ok

Fixed Point Types

https://riptutorial.com/ 48

MySQL's pecivar and nuveric types store exact numeric data values. It is recommended to use
these types to preserve exact precision, such as for money.

Decimal

These values are stored in binary format. In a column declaration, the precision and scale should
be specified

Precision represents the number of significant digits that are stored for values.

Scale represents the number of digits stored after the decimal

salary DECIMAL(5,2)

5 represents the precision and 2 represents the scaie. For this example, the range of values that
can be stored in this column is -999.99 to 999.99

If the scale parameter is omitted, it defaults to 0
This data type can store up to 65 digits.

The number of bytes taken by pectuar (v, n) IS approximately wy 2.
Floating Point Types

rroaT and pousLe represent approximate data types.

e s ssen e

FLOAT 4 bytes 23 significant bits / ~7 decimal digits ~ 10"+/-38

DOUBLE 8bytes 53 significant bits / ~16 decimal digits 10"+/-308

REAL IS @ Synonym for rroat. pousLe prECISTON IS @ Synonym for pouste.

Although MySQL also permits (M,D) qualifier, do not use it. (M,D) means that values can be stored
with up to M total digits, where D can be after the decimal. Numbers will be rounded twice or
truncated; this will cause more trouble than benefit.

Because floating-point values are approximate and not stored as exact values, attempts to treat
them as exact in comparisons may lead to problems. Note in particular that a rLoat value rarely
equals a pousLe value.

Bit Value Type

The s17 type is useful for storing bit-field values. s11 (1) allows storage of up to M-bit values where
M is in the range of 1 to 64

You can also specify values with vit vaiue notation.

https://riptutorial.com/ 49

b'111" -> 7
p'10000000" —> 128

Sometimes it is handy to use 'shift' to construct a single-bit value, for example (1 << 7) for 128.

The maximum combined size of all BIT columns in an woz table is 4096.
CHAR(n)

CHAR (n) IS @ string of a fixed length of n characters. If it is cuaracTER SET utfsmb4, that means it
occupies exactly 4+n bytes, regardless of what text is in it.

Most use cases for cuar (n) involve strings that contain English characters, hence should be
CHARACTER SET ascii. (latin1 Will do just as good.)

country_code CHAR(2) CHARACTER SET ascii,
postal_code CHAR(6) CHARACTER SET ascii,
uuid CHAR (39) CHARACTER SET ascii, —— more discussion elsewhere

DATE, DATETIME, TIMESTAMP, YEAR, and TIME

The pate datatype comprises the date but no time component. Its format is 'vyyy-mv-pp' with a
range of '1000-01-01' to '9999-12-31".

The paterive type includes the time with a format of 'YYYY-MM-DD HH:MM:SS'. It has a range
from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

The rvestave type is an integer type comprising date and time with an effective range from '1970-
01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

The vrar type represents a year and holds a range from 1901 to 2155.

The r1ve type represents a time with a format of 'HH:MM:SS' and holds a range from '-838:59:59'
to '838:59:59'.

Storage Requirements:

| |
| Data Type | Before MySQL 5.6.4 | as of MySQL 5.6.4 |
e R e !
YEAR	1 byte	1 byte
DATE	3 bytes	3 bytes
TIME	3 bytes	3 bytes + fractional seconds storage
DATETIME	8 bytes	5 bytes + fractional seconds storage
TIMESTAMP	4 bytes	4 bytes + fractional seconds storage

| |

https://riptutorial.com/ 50

| Fractional Seconds Precision | Storage Required |

[| ————— |
| 0 bytes |
| 1 byte |
| 2 byte |
| 3 byte |
| ————— |

See the MySQL Manual Pages DATE, DATETIME, and TIMESTAMP Types, Data Type Storage
Requirements, and Fractional Seconds in Time Values.

Read Data Types online: https://riptutorial.com/mysql/topic/4137/data-types

https://riptutorial.com/

51

http://dev.mysql.com/doc/refman/5.7/en/datetime.html
http://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.7/en/fractional-seconds.html
https://riptutorial.com/mysql/topic/4137/data-types

C_hapter 17: Date and Time Operations

Examples
Now()

Select Now () ;

Shows the current server date and time.

Update " footable' set mydatefield = Now () ;

This will update the field nydaterie1a with current server date and time in server's configured
timezone, e.g.

'2016-07-21 12:00:00"

Date arithmetic

NOW () + INTERVAL 1 DAY -- This time tomorrow

CURDATE () — INTERVAL 4 DAY -- Midnight 4 mornings ago

Show the mysql questions stored that were asked 3 to 10 hours ago (180 to 600 minutes ago):

SELECT gId,askDate,minuteDiff

FROM

(SELECT ¢gId,askDate,
TIMESTAMPDIFF (MINUTE, askDate,now()) as minuteDiff
FROM questions_mysqgl

) xDerived

WHERE minuteDiff BETWEEN 180 AND 600

ORDER BY gId DESC

LIMIT 50;

f—————————— St G ————— +
| gId | askDate | minuteDiff |
f—————————— St G ————— +
38546828	2016-07-23 22:06:50	182
38546733	2016-07-23 21:53:26	195
38546707	2016-07-23 21:48:46	200
38546687	2016-07-23 21:45:26	203
	I	
f—————————— St G ————— +

MySQL manual pages for trvmstavenres ().

Beware Do not try to use expressions like curoate () + 1 for date arithmetic in MySQL. They don't

return what you expect, especially if you're accustomed to the Oracle database product. Use

https://riptutorial.com/

52

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff

CURDATE () + INTERVAL 1 DAy instead.
Testing against a date range

Although it is very tempting to use seTween ... anp ... for @ date range, it is problematical. Instead,
this pattern avoids most problems:

WHERE x >= '2016-02-25"
AND x < '2016-02-25'" + INTERVAL 5 DAY

Advantages:

« seTweeN IS 'inclusive' thereby including the final date or second.

* 23:59:59 iS clumsy and wrong if you have microsecond resolution on a pateTMe.
+ This pattern avoid dealing with leap years and other data calculations.

|t works whether x iS DATE, DATETIME OF TIMESTAMP.

SYSDATE(), NOW(), CURDATE()
SELECT SYSDATE () ;
This function returns the current date and time as a value in 'vyyvy-vMm-pp sH:MM:SS' OF

vyvyymvopuemmss format, depending on whether the function is used in a string or numeric context. It
returns the date and time in the current time zone.

SELECT NOW () ;
This function is a synonym for syspatz ().

SELECT CURDATE () ;
This function returns the current date, without any time, as a value in 'yvyyy-mv-pp' Of yyyymvpD
format, depending on whether the function is used in a string or numeric context. It returns the
date in the current time zone.
Extract Date from Given Date or DateTime Expression

SELECT DATE ('2003-12-31 01:02:03");

The output will be:

2003-12-31

Using an index for a date and time lookup

Many real-world database tables have many rows with parerive OR t1vMesTave column values

https://riptutorial.com/ 53

spanning a lot of time, including years or even decades. Often it's necessary to use a wuere clause
to retrieve some subset of that timespan. For example, we might want to retrieve rows for the date
1-September-2016 from a table.

An inefficient way to do that is this:

WHERE DATE (x) = '2016-09-01" /* slow! *x/

It's inefficient because it applies a function -- pate () -- to the values of a column. That means
MySQL must examine each value of %, and an index cannot be used.

A better way to do the operation is this

WHERE x >= '2016-09-01"
AND x < '2016-09-01' + INTERVAL 1 DAY

This selects a range of values of x lying anywhere on the day in question, up until but not including
(hence <) midnight on the next day.

If the table has an index on the x column, then the database server can perform a range scan on
the index. That means it can quickly find the first relevant value of x, and then scan the index
sequentially until it finds the last relevant value. An index range scan is much more efficient than
the full table scan required by pate (x) = '2016-09-01.

Don't be tempted to use this, even though it looks more efficient.

WHERE x BETWEEN '2016-09-01' AND '2016-09-01' + INTERVAL 1 DAY /* wrong! */

It has the same efficiency as the range scan, but it will select rows with values of x falling exactly
at midnight on 2-Sept-2016, which is not what you want.

Read Date and Time Operations online: https://riptutorial.com/mysql/topic/1882/date-and-time-
operations

https://riptutorial.com/ 54

https://riptutorial.com/mysql/topic/1882/date-and-time-operations
https://riptutorial.com/mysql/topic/1882/date-and-time-operations

C_hapter 18: Dealing with sparse or missing
data

Examples

Working with columns containg NULL values

In MySQL and other SQL dialects, nurr values have special properties.

Consider the following table containing job applicants, the companies they worked for, and the
date they left the company. vurw indicates that an applicant still works at the company:

CREATE TABLE example
("applicant_id® INT, "~ company_name VARCHAR(255), “end_date’ DATE);

o o o +
| applicant_id | company_name | end_date |
o o o +
1	Google	NULL
1	Initech	2013-01-31
2	Woodworking.com	2016-08-25
2	NY Times	2013-11-10
3	NFL.com	2014-04-13
o o o +

Your task is to compose a query that returns all rows after 2016-01-01, including any employees
that are still working at a company (those with ~ur. end dates). This select statement:

SELECT * FROM example WHERE end_date > '2016-01-01"';

fails to include any rows with ~urw values:

o o o +
| applicant_id | company_name | end_date |
o o o +
| 2 | Woodworking.com | 2016-08-25 |
o o o +

Per the MySQL documentation, comparisons using the arithmetic operators <, >, =, and <>
themselves return nurw instead of a boolean trur or rarse. Thus a row with a nurz end_date is
neither greater than 2016-01-01 nor less than 2016-01-01.

This can be solved by using the keywords IS NULL:

SELECT * FROM example WHERE end_date > '2016-01-01' OR end_date IS NULL;

o ——— e —— e —— +
| applicant_id | company_name | end_date |
o ——— e —— e —— +

https://riptutorial.com/ 55

http://dev.mysql.com/doc/refman/5.7/en/working-with-null.html

| 1 | Google | NULL |
| 2 | Woodworking.com | 2016-08-25 |
o o e —— +

Working with NULLs becomes more complex when the task involves aggregation functions like
Max () and a crour By clause. If your task were to select the most recent employed date for each
applicant_id, the following query would seem a logical first attempt:

SELECT applicant_id, MAX (end_date) FROM example GROUP BY applicant_id;

fo——————— o +
| applicant_id | MAX (end_date) |
fo——————— o +
1	2013-01-31
2	2016-08-25
3	2014-04-13
fo——————— o +

However, knowing that nurt indicates an applicant is still employed at a company, the first row of
the result is inaccurate. Using case ween provides a workaround for the nurt issue:

SELECT
applicant_id,
CASE WHEN MAX (end_date is null) = 1 THEN 'present' ELSE MAX (end_date) END
max_date
FROM example
GROUP BY applicant_id;

F—————— o ————— +
| applicant_id | max_date |
F—————— o ————— +
1	present
2	2016-08-25
3	2014-04-13
F—————— o ————— +

This result can be joined back to the original examp1e table to determine the company at which an
applicant last worked:

SELECT
data.applicant_id,
data.company_name,
data.max_date

FROM (

SELECT

*
’

CASE WHEN end_date is null THEN 'present' ELSE end_date END max_date
FROM example
) data
INNER JOIN (
SELECT
applicant_id,
CASE WHEN MAX (end_date is null) = 1 THEN 'present' ELSE MAX (end_date) END max_date
FROM
example
GROUP BY applicant_id

https://riptutorial.com/ 56

) 3
ON data.applicant_id = j.applicant_id AND data.max_date = j.max_date;

Fom o o +
| applicant_id | company_name | max_date |
Fom o o +
1	Google	present
2	Woodworking.com	2016-08-25
3	NFL.com	2014-04-13
Fom o o +

These are just a few examples of working with ~urt values in MySQL.

Read Dealing with sparse or missing data online: https:/riptutorial.com/mysql/topic/5866/dealing-
with-sparse-or-missing-data

https://riptutorial.com/

57

https://riptutorial.com/mysql/topic/5866/dealing-with-sparse-or-missing-data
https://riptutorial.com/mysql/topic/5866/dealing-with-sparse-or-missing-data

Chapter 19: DELETE

Syntax
 DELETE [LOW_PRIORITY][QUICK][IGNORE] FROM table [WHERE conditions]

[ORDER BY expression [ASC | DESC]] [LIMIT number_rows]; /// Syntax for delete row(s)
from single table

Parameters

If Low_pr1oRTTY IS Provided, the delete will be delayed until there are no

O AR processes reading from the table

If tenore is provided, all errors encountered during the delete are

IGNORE .
ignored
table The table from which you are going to delete records
WHERE conditions The conditions that must be met for the records to be deleted. If no
conditions are provided, then all records from the table will be deleted
ORDER. BY If oroER BY IS provided, records will be deleted in the given order
expression
It controls the maximum number of records to delete from the table.
LIMIT . .
Given numper_rows Will be deleted.
Examples

Delete with Where clause
DELETE FROM "table_name’™ WHERE " field one’ = 'value_one'

This will delete all rows from the table where the contents of the rie1d_one for that row match
'value_one'

The wuere clause works in the same way as a select, so things like >, <, <> or n1xke can be used.

Notice: It is necessary to use conditional clauses (WHERE, LIKE) in delete query. If you do not
use any conditional clauses then all data from that table will be deleted.

Delete all rows from a table

https://riptutorial.com/

DELETE FROM table_name ;

This will delete everything, all rows from the table. It is the most basic example of the syntax. It
also shows that pereTe Statements should really be used with extra care as they may empty a
table, if the waere clause is omitted.

LIMITing deletes

DELETE FROM "table_name® WHERE "~ field_one’ = 'value_one' LIMIT 1

This works in the same way as the 'Delete with Where clause' example, but it will stop the deletion
once the limited number of rows have been removed.

If you are limiting rows for deletion like this, be aware that it will delete the first row which matches
the criteria. It might not be the one you would expect, as the results can come back unsorted if
they are not explicitly ordered.

Multi-Table Deletes

MySQL's pereTe Statement can use the sorn construct, allowing also to specify which tables to
delete from. This is useful to avoid nested queries. Given the schema:

create table people
(id int primary key,
name varchar (100) not null,
gender char(l) not null
)
insert people (id,name,gender) values
(1, 'Kathy','f"), (2, 'John', 'm'), (3, 'Paul', 'm'), (4, 'Kim', '£"');

create table pets
(id int auto_increment primary key,
ownerId int not null,
name varchar (100) not null,
color varchar (100) not null
)
insert pets(ownerId,name,color) values
(1, "Rover', 'beige'), (2, 'Bubbles', "purple'), (3, 'Spot', 'black and white'),
(1, '"Rover2', 'white');

o g

1 Kathy f
2 John m
3 Paul m

4 Kim f

https://riptutorial.com/ 59

Rover beige
2 2 Bubbles purple

4 A Rover2 white

If we want to remove Paul's pets, the statement

DELETE p2
FROM pets p2
WHERE p2.ownerId in (
SELECT pl.id
FROM people pl
WHERE pl.name = 'Paul');

can be rewritten as:

DELETE p2 —-— remove only rows from pets
FROM people pl

JOIN pets p2

ON p2.ownerId = pl.id

WHERE pl.name = 'Paul';

1 row deleted
Spot is deleted from Pets

p1 and p2 are aliases for the table names, especially useful for long table names and ease of
readability.

To remove both the person and the pet:

DELETE pl, p2 —— remove rows from both tables
FROM people pl

JOIN pets p2

ON p2.ownerId pl.id

WHERE pl.name = 'Paul';

2 rows deleted
Spot is deleted from Pets
Paul is deleted from People

foreign keys

When the DELETE statement involes tables with a foreing key constrain the optimizer may
process the tables in an order that does not follow the relationship. Adding for example a foreign
key to the definition of pets

ALTER TABLE pets ADD CONSTRAINT " fk_pets_2_people’ FOREIGN KEY (ownerId) references people (id)

https://riptutorial.com/ 60

ON DELETE CASCADE;

the engine may try to delete the entries from peop1e before pets, thus causing the following error:

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
("test’ . pets’, CONSTRAINT “pets_ibfk_1° FOREIGN KEY (ownerId') REFERENCES "people’ (" id"))

The solution in this case is to delete the row from peopie and rely on 1nnope's on peLETE Capabilities
to propagate the deletion:

DELETE FROM people
WHERE name = 'Paul';

2 rows deleted
Paul is deleted from People
Spot is deleted on cascade from Pets

Another solution is to temporarily disable the check on foreing keys:

SET foreign_key_checks = 0;
DELETE pl, p2 FROM people pl JOIN pets p2 ON p2.ownerId = pl.id WHERE pl.name = 'Paul';
SET foreign_key_checks = 1;

Basic delete
DELETE FROM "myTable® WHERE "~ someColumn = 'something'

The waere clause is optional but without it all rows are deleted.

DELETE vs TRUNCATE

TRUNCATE tableName;

This will delete all the data and reset auro_1ncrevenT index. It's much faster than perere From
tableName ON @ huge dataset. It can be very useful during development/testing.

When you truncate a table SQL server doesn't delete the data, it drops the table and recreates it,
thereby deallocating the pages so there is a chance to recover the truncated data before the
pages where overwritten. (The space cannot immediately be recouped for
innodb_file_per_tableZOFF)

Multi-table DELETE
MySQL allows to specify from which table the matching rows must be deleted

—-— remove only the employees
DELETE e
FROM Employees e JOIN Department d ON e.department_id = d.department_id

https://riptutorial.com/ 61

http://stackoverflow.com/a/30997025/5006740

WHERE d.name = 'Sales'

—-— remove employees and department

DELETE e, d

FROM Employees e JOIN Department d ON e.department_id = d.department_id
WHERE d.name = 'Sales'

—-— remove from all tables (in this case same as previous)

DELETE
FROM Employees e JOIN Department d ON e.department_id = d.department_id
WHERE d.name = 'Sales'

Read DELETE online: https://riptutorial.com/mysql/topic/1487/delete

https://riptutorial.com/

62

https://riptutorial.com/mysql/topic/1487/delete

C_hapter 20: Drop Table

Syntax

DROP TABLE table_name;

DROP TABLE IF EXISTS table _name; -- to avoid pesky error in automated script
DROP TABLE t1, t2, t3; -- DROP multiple tables

DROP TEMPORARY TABLE t; -- DROP a table from CREATE TEMPORARY TABLE ...

Parameters

TEMPORARY Optional. It specifies that only temporary tables should be dropped by the

DROP TABLE statement.
Optional. If specified, the DROP TABLE statement will not raise an error if
IF EXISTS)
one of the tables does not exist.
Examples
Drop Table

Drop Table is used to delete the table from database.
Creating Table:

Creating a table named tbl and then deleting the created table

CREATE TABLE tbl (
id INT NOT NULL AUTO_INCREMENT,
title VARCHAR(100) NOT NULL,
author VARCHAR (40) NOT NULL,
submission_date DATE,
PRIMARY KEY (id)

Dropping Table:
DROP TABLE tbl;

PLEASE NOTE

Dropping table will completely delete the table from the database and all its
information, and it will not be recovered.

https://riptutorial.com/

63

Drop tables from database

DROP TABLE Database.table_name

Read Drop Table online: https://riptutorial.com/mysql/topic/4123/drop-table

https://riptutorial.com/

64

https://riptutorial.com/mysql/topic/4123/drop-table

C_hapter 21: Dynamic Un-Pivot Table using
Prepared Statement

Examples

Un-pivot a dynamic set of columns based on condition

The following example is a very useful basis when you are trying to convert transaction data to un-
pivoted data for Bl/reporting reasons, where the dimensions which are to be un-pivoted can have
a dynamic set of columns.

For our example, we suppose that the raw data table contains employee assessment data in the
form of marked questions.

The raw data table is the following:

create table rawdata

(

PersonId VARCHAR (255)
,QuestionlId INT(11)
,Question2Id INT(11)
,Question3Id INT(11)

)

The rawdata table is a temporary table as part of the ETL procedure and can have a varying
number of questions. The goal is to use the same un-pivoting procedure for an arbitrary number of
Questions, namely columns that are going to be un-pivoted.

Below is a toy example of rawdata table:

Personld Question1ld Question2ld Question3Id
Giannaros 1 3 1

p |Patra 2 4 3

The well-known,static way to unpivot the data, in MYSQL is by using UNION ALL:

create table unpivoteddata

(
PersonId VARCHAR (255)

,QuestionId VARCHAR (255)
,QuestionValue INT (11)

)i

INSERT INTO unpivoteddata SELECT PersonlId, 'QuestionlId' col, QuestionlId
FROM rawdata

https://riptutorial.com/ 65

http://i.stack.imgur.com/XC8KC.png

UNION ALL

SELECT PersonId, 'Question2Id' col, Question2Id
FROM rawdata

UNION ALL

SELECT PersonId, 'Question3Id' col, Question3Id
FROM rawdata;

In our case we want to define a way to unpivot an arbitrary number of Questionld columns. For
that we need to execute a prepared statement that is a dynamic select of the desired columns. In
order to be able to choose which columns need to be un-pivoted, we will use a GROUP_CONCAT
statement and we will choose the columns for which the data type is set to 'int'. In the
GROUP_CONCAT we also include all additional elements of our SELECT statement to-be
executed.

set @temp2 = null;

SELECT GROUP_CONCAT (' SELECT ', 'PersonId',6',','''',COLUMN_NAME,'''', ' col
', ',',COLUMN_NAME, ' FROM rawdata' separator ' UNION ALL') FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'rawdata' AND DATA_TYPE = 'Int' INTO Qtemp2;

select (@temp2;

In another occasion we could have chosen columns that the column name matches a pattern, for
example instead of

DATA_TYPE = 'Int'

use

COLUMN_NAME LIKE 'Question%'

or something suitable that can be controlled through the ETL phase.

The prepared statement is finalized as follows:

set @temp3 = null;

select concat ('INSERT INTO unpivoteddata', @temp2) INTO @temp3;
select Qtemp3;

prepare stmt FROM (@temp3;

execute stmt;
deallocate prepare stmt;

The unpivoteddata table is the following:

SELECT * FROM unpivoteddata

https://riptutorial.com/ 66

PersonId QuestionId Questionvalue
Giannaros Question1ld 1
Patra Questionild 2
Giannaros Question2ld 3
Patra Question2ld 4
Giannaros Question3ld 1
Patra Question3ld 3

Selecting columns according to a condition and then crafting a prepared statement is an efficient

way of dynamically un-pivoting data.

Read Dynamic Un-Pivot Table using Prepared Statement online:
https://riptutorial.com/mysql/topic/6491/dynamic-un-pivot-table-using-prepared-statement

https://riptutorial.com/

67

http://i.stack.imgur.com/2DZRJ.png
https://riptutorial.com/mysql/topic/6491/dynamic-un-pivot-table-using-prepared-statement

Chapter 22: ENUM

Examples

Why ENUM?

ENUM provides a way to provide an attribute for a row. Attributes with a small number of non-
numeric options work best. Examples:

reply ENUM('yes', 'no')
gender ENUM('male', 'female', 'other', 'decline-to-state')

The values are strings:

INSERT ... VALUES ('yes', 'female')
SELECT ... ——> yes female

TINYINT as an alternative
Let's say we have

type ENUM('fish', 'mammal', 'bird")
An alternative is

type TINYINT UNSIGNED

plus

CREATE TABLE AnimalTypes (
type TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR (20) NOT NULL COMMENT " ('fish', 'mammal', 'bird')",
PRIMARY KEY (type),
INDEX (name)
) ENGINE=InnoDB

which is very much like a many-to-many table.

Comparison, and whether better or worse than ENUM:

(worse) INSERT: need to lookup the type

» (worse) SELECT: need to JOIN to get the string (ENUM gives you the string with no effort)
(better) Adding new types: Simply insert into this table. With ENUM, you need to do an
ALTER TABLE.

(same) Either technique (for up to 255 values) takes only 1 byte.

(mixed) There's also an issue of data integrity: rinvint will admit invalid values; whereas exum

https://riptutorial.com/

68

sets them to a special empty-string value (unless strict SQL mode is enabled, in which case

they are rejected). Better data integrity can be achieved with Trnvint by making it a foreign

key into a lookup table: which, with appropriate queries/joins, but there is still the small cost

of reaching into the other table. (rore1cn kEYS are not free.)

VARCHAR as an alternative
Let's say we have

type ENUM('fish', 'mammal', 'bird")
An alternative is

type VARCHAR (20) COMENT "fish, bird, etc"

This is quite open-ended in that new types are trivially added.

Comparison, and whether better or worse than ENUM:

(same) INSERT: simply provide the string
» (worse?) On INSERT a typo will go unnoticed
» (same) SELECT: the actual string is returned
(worse) A lot more space is consumed

Adding a new option

ALTER TABLE tbl MODIFY COLUMN type ENUM('fish', 'mammal', 'bird', 'insect');

Notes

» As with all cases of MODIFY COLUMN, you must include ~ot nurr, and any other qualifiers

that originally existed, else they will be lost.

» [fyou add to the end of the list and the list is under 256 items, the avrter is done by merely

changing the schema. That is there will not be a lengthy table copy. (Old versions of MySQL

did not have this optimization.)

NULL vs NOT NULL

Examples of what happens when NULL and 'bad-value' are stored into nullable and not nullable

columns. Also shows usage of casting to numeric via +o.

CREATE TABLE enum (
e ENUM('yes', 'no') NOT NULL,
enull ENUM('x', 'y', 'z'") NULL
)i
INSERT INTO enum (e, enull)
VALUES
('yes', 'x
("no', 'y

)

v
I4
")y

https://riptutorial.com/

69

(NULL, NULL),

('"bad-value', 'bad-value');
Query OK, 4 rows affected, 3 warnings (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 3

mysql>SHOW WARNINGS;

o e e +
| Level | Code | Message |
o e e +
Warning	1048	Column 'e' cannot be null
Warning	1265	Data truncated for column 'e' at row 4
Warning	1265	Data truncated for column 'enull' at row 4
o e e +
3 rows in set (0.00 sec)

What is in the table after those inserts. This uses "+0" to cast to numeric see what is stored.

mysgl>SELECT e, e+0 FROM enum;

Ppe=—== Ppe=—== +

| e | e+0 |

Ppe=—== Ppe=—== +

| yes | 1]

| no | 2|

| | 0 | —-- NULL

| | 0 | -- 'bad-value'
Ppe=—== Ppe=—== +

4 rows in set (0.00 sec)

mysgl>SELECT enull, enull+0 FROM enum;

e e +
| enull | enull+0 |
e e +
| x | 1
|y | 2 |
| NULL | NULL |
| | 0 | -— 'bad-value'
e e +

4 rows in set (0.00 sec)

Read ENUM online: https://riptutorial.com/mysql/topic/4425/enum

https://riptutorial.com/

https://riptutorial.com/mysql/topic/4425/enum

C_hapter 23: Error 1055:
ONLY_FULL GROUP_BY: something is not
in GROUP BY clause ...

Introduction

Recently, new versions of MySQL servers have begun to generate 1055 errors for queries that
used to work. This topic explains those errors. The MySQL team has been working to retire the
nonstandard extension to crour By, Or at least to make it harder for query writing developers to be
burned by it.

Remarks

For a long time now, MySQL has contained a notorious nonstandard extension to crour By, Which
allows oddball behavior in the name of efficiency. This extension has allowed countless
developers around the world to use crour By in production code without completely understanding
what they were doing.

In particular, it's a bad idea to use seLect * in a crour BY qUery, because a standard crour BY
clause requires enumerating the columns. Many developers have, unfortunately, done that.

Read this. https://dev.mysqgl.com/doc/refman/5.7/en/group-by-handling.html

The MySQL team has been trying to fix this misfeature without messing up production code. They
added a sq1_mode flag in 5.7.5 named owiv rurt_crovr sv to compel standard behavior. In a recent
release, they turned on that flag by default. When you upgraded your local MySQL to 5.7.14, the

flag got switched on and your production code, dependent on the old extension, stopped working.

If you've recently started getting 1055 errors, what are your choices?

1. fix the offending SQL queries, or get their authors to do that.

2. roll back to a version of MySQL compatible out-of-the-box with the application software you
use.

3. change your server's =1 node to get rid of the newly set onvy_rurs_crour_sy mode.

You can change the mode by doing a ser command.

SET sgl_mode =
'STRICT_TRANS_TABLES,NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ ZERO,NO_AUTO_CREATE_USER, NO_EN(

should do the trick if you do it right after your application connects to MySQL.

Or, you can find the init file in your MySQL installation, locate the sq1_mode= line, and change it to

https://riptutorial.com/ 71

https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
http://dev.mysql.com/doc/refman/5.7/en/server-configuration-defaults.html

omit onvy_ruLr_crour_gy, and restart your server.

Examples

Using and misusing GROUP BY

SELECT item.item_id, item.name, /* not SQL-92 */
COUNT (*) number_of_uses
FROM item

JOIN uses ON item.item_id, uses.item_id
GROUP BY item.item_ id

will show the rows in a table called item, and show the count of related rows in a table called uses.
This works well, but unfortunately it's not standard SQL-92.

Why not? because the serect clause (and the oroer By clause) in crour BY quUeries must contain
columns that are

1. mentioned in the crour &Y clause, or
2. aggregate functions such as counr (), mn (), and the like.

This example's serecT clause mentions item.name, @ column that does not meet either of those
criteria. MySQL 5.6 and earlier will reject this query if the SQL mode contains onvLy_ruLL_crour_sy.

This example query can be made to comply with the SQL-92 standard by changing the crour By
clause, like this.

SELECT item.item_id, item.name,
COUNT (*) number_of_uses
FROM item
JOIN uses ON item.item_id, uses.item_id
GROUP BY item.item_id, item.name

The later SQL-99 standard allows a serecT statement to omit unaggregated columns from the
group key if the DBMS can prove a functional dependence between them and the group key
columns. Because iten.name is functionally dependent on item.item_iq, the initial example is valid
SQL-99. MySQL gained a functional dependence prover in version 5.7. The original example
WOrks under oNLY_FULL_GROUP_BY.

Misusing GROUP BY to return unpredictable results: Murphy's Law

SELECT item.item_id, uses.category, /* nonstandard */
COUNT (*) number_of_uses
FROM item

JOIN uses ON item.item_id, uses.item_id
GROUP BY item.item_id

will show the rows in a table called item, and show the count of related rows in a table called uses.
It will also show the value of a column called uses.category.

https://riptutorial.com/ 72

https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-dependence.html

This query works in MySQL (before the onvy_rur_crour_gy flag appeared). It uses MySQL's
nonstandard extension to crour By.

But the query has a problem: if several rows in the uses table match the ox condition in the sorn
clause, MySQL returns the category column from just one of those rows. Which row? The writer of
the query, and the user of the application, doesn't get to know that in advance. Formally speaking,
it's unpredictable: MySQL can return any value it wants.

Unpredictable is like random, with one significant difference. One might expect a random choice to
change from time to time. Therefore, if a choice were random, you might detect it during
debugging or testing. The unpredictable result is worse: MySQL returns the same result each time
you use the query, until it doesn't. Sometimes it's a new version of the MySQL server that causes
a different result. Sometimes it's a growing table causing the problem. What can go wrong, will go
wrong, and when you don't expect it. That's called Murphy's Law.

The MySQL team has been working to make it harder for developers to make this mistake. Newer
versions of MySQL in the 5.7 sequence have a sq1_mode flag called onvy_rurr_crour_sy. When that
flag is set, the MySQL server returns the 1055 error and refuses to run this kind of query.

Misusing GROUP BY with SELECT *, and how to fix it.

Sometimes a query looks like this, with a « in the serrct clause.

SELECT item.*, /* nonstandard */
COUNT (*) number_of_ uses
FROM item

JOIN uses ON item.item_id, uses.item_id
GROUP BY item.item_ id

Such a query needs to be refactored to comply with the onvy_rurr_crour_sy standard.

To do this, we need a subquery that uses crour sy correctly to return the number_of_uses value for
each item_id. This subquery is short and sweet, because it only needs to look at the uses table.

SELECT item_id, COUNT (*) number_of_uses
FROM uses
GROUP BY item_id

Then, we can join that subquery with the item table.

SELECT item.*, usecount.number_of_uses

FROM item
JOIN (
SELECT item_id, COUNT (*) number_of_uses
FROM uses
GROUP BY item_id
) usecount ON item.item_id = usecount.item_ id

This allows the crour BY clause to be simple and correct, and also allows us to use the + specifier.

Note: nevertheless, wise developers avoid using the + specifier in any case. It's usually better to

https://riptutorial.com/ 73

https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
https://en.wikipedia.org/wiki/Murphy%27s_law

list the columns you want in a query.

ANY_VALUE()

SELECT item.item_id, ANY_VALUE (uses.tag) tag,
COUNT (*) number_of_ uses

FROM item

JOIN uses ON item.item_id, uses.item_id

GROUP BY item.item_ id

shows the rows in a table called item, the count of related rows, and one of the values in the
related table called uses.

You can think of this ~nv_varue () function as a strange a kind of aggregate function. Instead of
returning a count, sum, or maximum, it instructs the MySQL server to choose, arbitrarily, one value
from the group in question. It's a way of working around Error 1055.

Be careful when using anv_varue () in queries in production applications.

It really should be called surerise_wmE (). It returns the value of some row in the GROUP BY group.
Which row it returns is indeterminate. That means it's entirely up to the MySQL server. Formally, it
returns an unpredictable value.

The server doesn't choose a random value, it's worse than that. It returns the same value every
time you run the query, until it doesn't. It can change, or not, when a table grows or shrinks, or
when the server has more or less RAM, or when the server version changes, or when Mars is in
retrograde (whatever that means), or for no reason at all.

You have been warned.

Read Error 1055: ONLY_FULL_GROUP_BY: something is not in GROUP BY clause ... online:
https://riptutorial.com/mysql/topic/8245/error-1055--only-full-group-by--something--is-not-in-group-
by-clause----

https://riptutorial.com/ 74

http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
https://riptutorial.com/mysql/topic/8245/error-1055--only-full-group-by--something--is-not-in-group-by-clause----
https://riptutorial.com/mysql/topic/8245/error-1055--only-full-group-by--something--is-not-in-group-by-clause----

C_hapter 24: Error codes

Examples
Error code 1064: Syntax error

select LastName, FirstName,
from Person

Returns message:

Error Code: 1064. You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'from
Person' at line 2.

Getting a "1064 error" message from MySQL means the query cannot be parsed without syntax
errors. In other words it can't make sense of the query.

The quotation in the error message begins with the first character of the query that MySQL can't
figure out how to parse. In this example MySQL can't make sense, in context, of from person. In
this case, there's an extra comma immediately before trom person. The comma tells MySQL to
expect another column description in the serect clause

A syntax error always says ... near '...'. The thing at the beginning of the quotes is very near
where the error is. To locate an error, look at the first token in the quotes and at the last token
before the quotes.

Sometimes you will get ... near '';thatis, nothing in the quotes. That means the first character
MySQL can't figure out is right at the end or the beginning of the statement. This suggests the
query contains unbalanced quotes (' or) or unbalanced parentheses or that you did not
terminate the statement before correctly.

In the case of a Stored Routine, you may have forgotten to properly use perimrTer.

So, when you get Error 1064, look at the text of the query, and find the point mentioned in the
error message. Visually inspect the text of the query right around that point.

If you ask somebody to help you troubleshoot Error 1064, it's best to provide both the text of the
whole query and the text of the error message.

Error code 1175: Safe Update

This error appears while trying to update or delete records without including the wuere clause that
uses the xey column.

To execute the delete or update anyway - type:

https://riptutorial.com/

SET SQL_SAFE_UPDATES = 0;

To enable the safe mode again - type:

SET SQL_SAFE_UPDATES = 1;

Error code 1215: Cannot add foreign key constraint

This error occurs when tables are not adequately structured to handle the speedy lookup
verification of Foreign Key (rx) requirements that the developer is mandating.

CREATE TABLE ' gtType' (
‘type® char(2) NOT NULL,
‘description’ wvarchar (1000) NOT NULL,
PRIMARY KEY (" type’)

) ENGINE=InnoDB;

CREATE TABLE " getTogethers® (

“id> int (11) NOT NULL AUTO_INCREMENT,

‘"type® char(2) NOT NULL,

‘eventDT datetime NOT NULL,

‘location’ varchar (1000) NOT NULL,

PRIMARY KEY (id’),

KEY "fk_gt2type’ ("type), —— see Notel below

CONSTRAINT “gettogethers_ibfk_1° FOREIGN KEY (type) REFERENCES "gtType (type’)
) ENGINE=InnoDB;

Note1: a KEY like this will be created automatically if needed due to the FK definition in the line
that follows it. The developer can skip it, and the KEY (a.k.a. index) will be added if necessary. An
example of it being skipped by the developer is shown below in someother.

So far so good, until the below call.

CREATE TABLE "~ someOther ™ (

“id’ int (11) NOT NULL AUTO_INCREMENT,

‘someDT ™ datetime NOT NULL,

PRIMARY KEY (id’),

CONSTRAINT " someOther_dt® FOREIGN KEY (someDT) REFERENCES ‘getTogethers' (" eventDT')
) ENGINE=InnoDB;

Error Code: 1215. Cannot add foreign key constraint

In this case it fails due to the lack of an index in the referenced table gettogethers to handle the
speedy lookup of an eventpr. TO be solved in next statement.

CREATE INDEX “gt_eventdt® ON getTogethers (' eventDT');

Table getTogethers has been modified, and now the creation of someother Will succeed.
From the MySQL Manual Page Using FOREIGN KEY Constraints:

MySQL requires indexes on foreign keys and referenced keys so that foreign key

https://riptutorial.com/ 76

https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

checks can be fast and not require a table scan. In the referencing table, there must be
an index where the foreign key columns are listed as the first columns in the same
order. Such an index is created on the referencing table automatically if it does not
exist.

Corresponding columns in the foreign key and the referenced key must have similar
data types. The size and sign of integer types must be the same. The length of string
types need not be the same. For nonbinary (character) string columns, the character
set and collation must be the same.

InnoDB permits a foreign key to reference any index column or group of columns.
However, in the referenced table, there must be an index where the referenced
columns are listed as the first columns in the same order.

Note that last point above about first (left-most) columns and the lack of a Primary Key
requirement (though highly advised).

Upon successful creation of a referencing (child) table, any keys that were automatically created
for you are visible with a command such as the following:

SHOW CREATE TABLE someOther;

Other common cases of experiencing this error include, as mentioned above from the docs, but
should be highlighted:

« Seemingly trivial differences in 1nt which is signed, pointing toward int unsieneD.

» Developers having trouble understanding multi-column (composite) KEYS and first (left-
most) ordering requirements.

1045 Access denied
See discussions in "GRANT" and "Recovering root password".
1236 "impossible position" in Replication

Usually this means that the Master crashed and that sync_nin1og Wwas OFF. The solution is to
CHANGE MASTER to pos=0 Of the next binlog file (see the Master) on the Slave.

The cause: The Master sends replication items to the Slave before flushing to its binlog (when
sync_binlog=0rF). If the Master crashes before the flush, the Slave has already logically moved
past the end of file on the binlog. When the Master starts up again, it starts a new binlog, so
CHANGEINng to the beginning of that binlog is the best available solution.

A longer term solution is sync_binlog=on, if you can afford the extra I/O that it causes.

(If you are running with GTID, ...7?)

https://riptutorial.com/

2002, 2003 Cannot connect

Check for a Firewall issue blocking port 3306.
Some possible diagnostics and/or solutions

* |s the server actually running?

 "service firewalld stop" and "systemctl disable firewalld"
* telnet master 3306

* Check the vind-address

» check skip—name-resolve

» check the socket.

1067, 1292, 1366, 1411 - Bad Value for number, date, default, etc.

1067 This is probably related to rrvestame defaults, which have changed over time. See TrvEsTAMP
defaults iN the Dates & Times page. (which does not exist yet)

1292/1366 DOUBLE/Integer Check for letters or other syntax errors. Check that the columns
align; perhaps you think you are putting into a varcuar but it is aligned with a numeric column.

1292 DATETIME Check for too far in past or future. Check for between 2am and 3am on a
morning when Daylight savings changed. Check for bad syntax, such as +oo timezone stuff.

1292 VARIABLE Check the allowed values for the varizaere you are trying to ser.

1292 LOAD DATA Look at the line that is 'bad’. Check the escape symbols, etc. Look at the
datatypes.

1411 STR_TO_DATE Incorrectly formatted date?

126, 127, 134, 144, 145

When you try access the records from MySQL database, you may get these error messages.
These error messages occurred due to corruption in MySQL database. Following are the types

MySQL error code 126 Index file is crashed
MySQL error code 127
MySQL error code 134
MySQL error code 144

MySQL error code 145

Record-file is crashed
Record was already deleted (or record file crashed)
Table is crashed and last repair failed

Table was marked as crashed and should be repaired

MySQL bug, virus attack, server crash, improper shutdown, damaged table are the reason behind
this corruption. When it gets corrupted, it becomes inaccessible and you cannot access them
anymore. In order to get accessibility, the best way to retrieve data from an updated backup.
However, if you do not have updated or any valid backup then you can go for MySQL Repair.

If the table engine type is uy1sav, apply caeck taBLe, then repatr TaBLE 1O it.

https://riptutorial.com/ 78

Then think seriously about converting to InnoDB, so this error won't happen again.

Syntax

CHECK TABLE <table name> ////To check the extent of database corruption
REPAIR TABLE <table name> ////To repair table

139

Error 139 may mean that the number and size of the fields in the table definition exceeds some
limit. Workarounds:

¢ Re-think the schema
* Normalize some fields
 Vertically partition the table

1366

This usually means that the character set handling was not consistent between client and server.
See ... for further assistance.

126, 1054, 1146, 1062, 24

(taking a break) With the inclusion of those 4 error numbers, | think this page will have covered
about 50% of the typical errors users get.

(Yes, this 'Example' needs revision.)
24 Can't open file (Too many open files)
open_files_limit comes from an OS setting. table_open_cache Needs to be less than that.
These can cause that error:
 Failure to pearrocaTe prePare in @ stored procedure.

« PARTITIONed table(s) with a large number of partitions and innodb_file_per_table = ON.
Recommend not having more than 50 partitions in a given table (for various reasons). (When
"Native Partitions" become available, this advice may change.)

The obvious workaround is to set increase the OS limit: To allow more files, change u1imit or
/etc/security/limits.conf OF IN sysctl.conf (Kern.maxfiles & kern.maxfilesperproc) or something
else (OS dependent). Then increase open_files_limit and table_open_cache.

As of 5.6.8, open_files_limit iS auto-sized based ON max_connections, but it is OK to change it from
the default.

1062 - Duplicate Entry

https://riptutorial.com/ 79

This error occur mainly because of the following two reasons
1. Duplicate Value - Error code: 1062. Duplicate entry ‘12’ for key ‘PRIMARY’

The primary key column is unique and it will not accept the duplicate entry. So when you are
trying to insert a new row which is already present in you table will produce this error.

To solve this, Set the primary key column as auro_increvent. And when you are trying
to insert a new row, ignore the primary key column or insert nurz value to primary key.

CREATE TABLE userDetails (
userId INT(10) NOT NULL AUTO_INCREMENT,
firstName VARCHAR (50),
lastName VARCHAR (50),
isActive INT (1) DEFAULT O,
PRIMARY KEY (userId));

—-——>and now while inserting
INSERT INTO userDetails VALUES (NULL , 'Jdohn', 'Doe', 1);

2. Unique data field - Exrror code: 1062. Duplicate entry ‘A’ for key ‘code’

You may assigned a column as unique and trying to insert a new row with already existing
value for that column will produce this error.

To overcome this error, use tnsert 16v0RE iNStead of normal insert. If the new row
which you are trying to insert doesn't duplicate an existing record, MySQL inserts it as
usual. If the record is a duplicate, the revore keyword discard it without generating any

error.

INSERT IGNORE INTO userDetails VALUES (NULL , 'John', 'Doe', 1);

Read Error codes online: https:/riptutorial.com/mysql/topic/895/error-codes

https://riptutorial.com/

80

https://riptutorial.com/mysql/topic/895/error-codes

C_hapter 25: Events

Examples

Create an Event

Mysql has its EVENT functionality for avoiding complicated cron interactions when much of what
you are scheduling is SQL related, and less file related. See the Manual page here. Think of
Events as Stored Procedures that are scheduled to run on recurring intervals.

To save time in debugging Event-related problems, keep in mind that the global event handler

must be turned on to process events.

SHOW VARIABLES WHERE variable_name='event_scheduler';

o o +
| Variable_name | Value |
o o +
| event_scheduler | OFF |
o o +

With it OFF, nothing will trigger. So turn it on:

SET GLOBAL event_scheduler = ON;

Schema for testing

create table theMessages

(id INT AUTO_INCREMENT PRIMARY KEY,
userId INT NOT NULL,
message VARCHAR (255) NOT NULL,
updateDt DATETIME NOT NULL,
KEY (updateDt)

)i

INSERT theMessages (userld,message,updateDt) VALUES
INSERT theMessages (userld,message,updateDt) VALUES
INSERT theMessages (userld,message,updateDt) VALUES

(
(
(
INSERT theMessages (userld,message,updateDt) VALUES

(1,
(7,
(1,
(1,

'message
'message
'message
'message

123",
124",
125",
126",

'2015-08-24 11
'2015-08-29") ;
'2015-09-03 12
'2015-09-03 14

:10:09");

:00:00");
:00:00");

The above inserts are provided to show a starting point. Note that the 2 events created below will

clean out rows.

Create 2 events, 1st runs daily, 2nd runs every 10 minutes

Ignore what they are actually doing (playing against one another). The point is on the INTERVAL

and scheduling.

https://riptutorial.com/

81

https://dev.mysql.com/doc/refman/5.7/en/create-event.html

DROP EVENT IF EXISTS “delete7DayOldMessages’;
DELIMITER $$
CREATE EVENT "delete7DayOldMessages’
ON SCHEDULE EVERY 1 DAY STARTS '2015-09-01 00:00:00"
ON COMPLETION PRESERVE

DO BEGIN

DELETE FROM theMessages

WHERE datediff (now(),updateDt)>6; —-—- not terribly exact,
day

—— Other code here

ENDSS
DELIMITER ;

DROP EVENT IF EXISTS “Every_10_Minutes_Cleanup’ ;

DELIMITER $$

CREATE EVENT "Every_10_Minutes_Cleanup’
ON SCHEDULE EVERY 10 MINUTE STARTS '2015-09-01 00:00:00"
ON COMPLETION PRESERVE

DO BEGIN
DELETE FROM theMessages

yesterday but <24hrs is still 1

WHERE TIMESTAMPDIFF (HOUR, updateDt, now())>168; —-—- messages over 1 week old (168 hours)

—— Other code here
ENDSS
DELIMITER ;

Show event statuses (different approaches)

SHOW EVENTS FROM my_db_name; —-- List all events by schema name (db name)

SHOW EVENTS;

SHOW EVENTS\G; ——- <————————- I like this one from mysgl> prompt

R e e b b I b b dh b i b b I b b b b b A b 1 row R R I R I b b b b I I R S b S b b b b i

Db: my_db_name
Name: delete7/DayOldMessages
Definer: root@localhost
Time zone: SYSTEM
Type: RECURRING
Execute at: NULL
Interval value: 1
Interval field: DAY
Starts: 2015-09-01 00:00:00
Ends: NULL
Status: ENABLED
Originator: 1
character_set_client: utf8
collation_connection: utf8_general_ci
Database Collation: utf8_general_ci

R e b e b b I b b dh b i b 2R I b b b b b I 2 row R R I b I b b b I A R A b S b b b b i 4

Db: my_db_name
Name: Every_10_Minutes_Cleanup
Definer: root@localhost
Time zone: SYSTEM

https://riptutorial.com/

82

Type: RECURRING
Execute at: NULL
Interval value: 10
Interval field: MINUTE
Starts: 2015-09-01 00:00:00
Ends: NULL
Status: ENABLED
Originator: 1
character_set_client: utf8
collation_connection: utf8_general_ci
Database Collation: utf8_general_ci
2 rows in set (0.06 sec)

Random stuff to consider

DROP EVENT someEventName; -- Deletes the event and its code
on compLETTON PRESERVE -- When the event is done processing, retain it. Otherwise, it is deleted.

Events are like triggers. They are not called by a user's program. Rather, they are scheduled. As
such, they succeed or fail silently.

The link to the Manual Page shows quite a bit of flexibilty with interval choices, shown below:

interval:

quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
WEEK | SECOND | YEAR MONTH | DAY HOUR | DAY MINUTE |
DAY SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

Events are powerful mechanisms that handle recurring and scheduled tasks for your system. They
may contain as many statements, DDL and DML routines, and complicated joins as you may
reasonably wish. Please see the MySQL Manual Page entitled Restrictions on Stored Programs.

Read Events online: https://riptutorial.com/mysql/topic/4319/events

https://riptutorial.com/ 83

http://dev.mysql.com/doc/refman/5.7/en/stored-program-restrictions.html
https://riptutorial.com/mysql/topic/4319/events

C_hapter 26: Extract values from JSON type

Introduction

MySQL 5.7.8+ supports native JSON type. While you have different ways to create json objects,
you can access and read members in different ways, too.

Main function is sson_exTracT, hence > and ->> operators are more friendly.

Syntax

+ JSON_EXTRACT(json_doc,pathl,...])
+ JSON_EXTRACT(json_doc,path)
+ JSON_EXTRACT(json_doc,path1,path2)

Parameters

json_doc valid JSON document

path members path

Remarks

Mentioned in MySQL 5.7 Reference Manual
» Multiple matched values by path argument(s)

If it is possible that those arguments could return multiple values, the matched values
are autowrapped as an array, in the order corresponding to the paths that produced
them. Otherwise, the return value is the single matched value.

» wurL Result when:
- any argemunt is NULL
> path not matched

Returns NULL if any argument is NULL or no paths locate a value in the document.

Examples

Read JSON Array value

Create @myjson variable as JSON type (read more):

https://riptutorial.com/

84

https://dev.mysql.com/doc/refman/5.7/en/json-search-functions.html#function_json-extract
http://www.riptutorial.com/mysql/topic/2985/json

SET @myjson = CAST('["A","B", {"id":1,"label":"C"}]' as JSON) ;

SELECT SOme members!

SELECT

JSON_EXTRACT (@myjson , 'S$[1]1') ,
JSON_EXTRACT (@myjson , 'S$[*].label') ,
JSON_EXTRACT (@myjson , 'S[1].*') ,
JSON_EXTRACT (@myjson , 'S$[2].*")

14

—-— result values:

I\IIB\"I’ '[\"C\ll]l, NULL, l[l, \IIC\II]'
—-— visually:

IIB", [IICII], NULL, [1, IICII]

JSON Extract Operators
Extract patnh by -> or ->> Operators, while ->> is UNQUOTED value:

SELECT

myjson_col->>'$[1]' , myjson_col->'S$[1]"' ,

myjson_col->>'$[*].label' ,
* 1
. r

myjson_col->>'$[1

myjson_col->>"'S$[2].*"'

FROM tablename ;
—— visuall:
B, "B" , ["C"]’ NULL’ [1’ "C"]

__AAA AAA

SO0 col->>path IS equal t0 JsoN_UNQUOTE (JSON_EXTRACT (col, path)) :

As with ->, the ->> operator is always expanded in the output of EXPLAIN, as the
following example demonstrates:

mysgl> EXPLAIN SELECT c->>'S$.name' AS name

—> FROM Jjemp WHERE g > 2\G
khkhkkhkkhkhkhkhkkhkkhkhkhkhkhkkhkhAkhrhkkhkkhkhkhrhkhkkk% 1. row khkkhkkhkhkhkhkkhkkhkhkhkhkkhkkhkhkhrhkkhkkhkhkhkhkhkkhkxk
id: 1

select_type: SIMPLE
table: jemp
partitions: NULL
type: range
possible_keys: i

key: 1
key_len: 5

ref: NULL

rows: 2

filtered: 100.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysgl> SHOW WARNINGS\G

khkhkkhkkhkhkhkhkkhkkhkhkhkhkkhkkhkhkhrhkkhkkhkhkhrhkhkkk% 1. row khkkhkkhkhkhkhkkhkkhkhkhkhkkhkkhkhkhrhkkhkkhkhkhkhkhkkhkxk
Level: Note
Code: 1003

https://riptutorial.com/ 85

Message: /* select#l */ select

json_unquote (json_extract (T jtest . Jemp . ¢, 'S.name')) AS ‘name’ from
"Jjtest’ . jemp where (Jjtest’ . jemp . g > 2)

1 row in set (0.00 sec)

Read about inline path extract(+)

Read Extract values from JSON type online: https://riptutorial.com/mysql/topic/9042/extract-
values-from-json-type

https://riptutorial.com/

86

https://dev.mysql.com/doc/refman/5.7/en/json-search-functions.html#operator_json-inline-path
https://riptutorial.com/mysql/topic/9042/extract-values-from-json-type
https://riptutorial.com/mysql/topic/9042/extract-values-from-json-type

C_hapter 27: Full-Text search

Introduction

MySQL offers FULLTEXT searching. It searches tables with columns containing text for the best
matches for words and phrases.

Remarks

ruLLTEXT Searching works strangely on tables containing small numbers of rows. So, when you're
experimenting with it, you may find it helpful to obtain a medium-sized table online. Here's a table
of book items, with titles and authors. You can download it, unzip it, and load it into MySQL.

ruLLTEXT Search is intended for use with human assistance. It's designed to yield more matches
than an ordinary wiere column LIKE 'texts' filtering operation.

ruLLTEXT Search is available for uyrsam tables. It is also available for rnnope tables in MySQL version
5.6.4 or later.

Examples
Simple FULLTEXT search

SET @searchTerm= 'Database Programming';
SELECT MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) Score,
ISBN, Author, Title
FROM book
WHERE MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE)
ORDER BY MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) DESC;

Given a table named nook with columns named 1sey, 'Title', and 'Author’, this finds books matching
the terms 'patabase Programming'. It Shows the best matches first.

For this to work, a fulltext index on the tit1e column must be available:

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_index (Title);

Simple BOOLEAN search

SET @searchTerm= 'Database Programming -Java';
SELECT MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE) Score,
ISBN, Author, Title
FROM book
WHERE MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE)
ORDER BY MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE) DESC;

https://riptutorial.com/ 87

http://www.plumislandmedia.net/wp-content/uploads/2017/01/book.zip
http://www.plumislandmedia.net/wp-content/uploads/2017/01/book.zip

Given a table named boox With columns named 1sey, Title, and author, this searches for books
with the words 'patabase’ and 'Programming’ in the title, but not the word 'Java:.

For this to work, a fulltext index on the Title column must be available:

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_index (Title);

Multi-column FULLTEXT search

SET @searchTerm= 'Date Database Programming';
SELECT MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) Score,
ISBN, Author, Title
FROM book
WHERE MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE)
ORDER BY MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) DESC;

Given a table named book with columns named 1sex, Title, and author, this finds books matching
the terms 'Date Database Programming'. It shows the best matches first. The best matches
include books written by Prof. C. J. Date.

(But, one of the best matches is also The Date Doctor's Guide to Dating : How to Get from First
Date to Perfect Mate. This shows up a limitation of FULLTEXT search: it doesn't pretend to
understand such things as parts of speech or the meaning of the indexed words.)

For this to work, a fulltext index on the Title and Author columns must be available:

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_author_index (Title, Author);

Read Full-Text search online: https:/riptutorial.com/mysql/topic/8759/full-text-search

https://riptutorial.com/ 88

https://riptutorial.com/mysql/topic/8759/full-text-search

C_hapter 28: Group By

Syntax

1. SELECT expression1, expression2, ... expression_n,

2. aggregate_function (expression)

3. FROM tables

4. [WHERE conditions]

5. GROUP BY expressioni, expression2, ... expression_n;

Parameters

The expressions that are not encapsulated within an
aggregate function and must be included in the GROUP BY
clause.

expression1, expression2, ...
expression_n

A function such as SUM, COUNT, MIN, MAX, or AVG

r function .
aggregate_functio functions.

he tables that you wish to retrieve records from. There must

tables be at least one table listed in the FROM clause.
WHERE conditions Optional. The conditions that must be met for the records to
be selected.
Remarks

The MySQL GROUP BY clause is used in a SELECT statement to collect data across multiple
records and group the results by one or more columns.

Its behavior is governed in part by the value of the owty rurt crouve sy variable. When this is
enabled, seLect statements that group by any column not in the output return an error. (This is the
default as of 5.7.5.) Both setting and not setting this variable can cause problems for naive users
or users accustomed to other DBMSs.

Examples
GROUP BY USING SUM Function

SELECT product, SUM(gquantity) AS "Total quantity"
FROM order_details
GROUP BY product;

https://riptutorial.com/ 89

http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_only_full_group_by
http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_only_full_group_by
http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_only_full_group_by
http://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
http://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

Group By Using MIN function

Assume a table of employees in which each row is an employee who has a namne, a department, and
d salary.

SELECT department, MIN(salary) AS "Lowest salary"
FROM employees
GROUP BY department;

This would tell you which department contains the employee with the lowest salary, and what that
salary is. Finding the name Of the employee with the lowest salary in each department is a different
problem, beyond the scope of this Example. See "groupwise max".

GROUP BY USING COUNT Function

SELECT department, COUNT (*) AS "Man_Power"
FROM employees
GROUP BY department;

GROUP BY using HAVING

SELECT department, COUNT (*) AS "Man_Power"
FROM employees

GROUP BY department

HAVING COUNT (*) >= 10;

Using crour BY ... mavinG to filter aggregate records is analogous to using sevect ... waere to filter
individual records.

You could also say saving Man_power >= 10 Since naving understands "aliases".
Group By using Group Concat
Group Concat is used in MySQL to get concatenated values of expressions with more than one

result per column. Meaning, there are many rows to be selected back for one column such as

Name (1) : Score (*)

Adam A+
Adam A-
Adam B

Adam C+
Bill D-

https://riptutorial.com/ 90

http://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html#function_group-concat

John A-

SELECT Name, GROUP_CONCAT (Score ORDER BY Score desc SEPERATOR ' ') AS Grades
FROM Grade
GROUP BY Name

Results:
o o +
| Name | Grades |
o o +
Adam	C+ B A- A+
Bill	D-—
John	A-
o o +

GROUP BY with AGGREGATE functions

Table ORDERS
fom fom tom e fo———— +
| orderid | customerid | customer | total | items |
fom fom tom e fo———— +
1	1	Bob [1300	10	
2	3	Fred	500	2
3	5	Tess	2500	8
4	1	Bob	300	6
5	2	Carly	800	3
6	2	Carly	1000	12
7 3	Fred	100	1	
8	5	Tess	11500	50
9	4	Jenny	200	2
10	1	Bob	500	15
fom fom tom e fo———— +
« COUNT

Return the number of rows that satisfy a specific criteria in warre clause.

E.g.: Number of orders for each customer.

SELECT customer, COUNT(*) as orders
FROM orders

GROUP BY customer

ORDER BY customer

Result:
o o +
| customer | orders |
o o +
| Bob | 3 |

https://riptutorial.com/ 91

« SUM
Return the sum of the selected column.

E.g.: Sum of the total and items for each customer.

SELECT customer, SUM(total) as sum_total, SUM(items) as sum_items

FROM orders
GROUP BY customer
ORDER BY customer

Result:
o o o +
| customer | sum_total | sum_items |
o o o +
Bob	2100	31
Carly	1800	15
Fred	600	3
Jenny	200	2
Tess	14000	58
o o o +
« AVG

Return the average value of a column of numeric value.

E.g.: Average order value for each customers.

SELECT customer, AVG(total) as avg_total
FROM orders

GROUP BY customer

ORDER BY customer

Result:
fo— o +
| customer | avg_total |
fo— o +
Bob	700
Carly	900
Fred	300
Jenny	200
Tess	7000
fo— o +
« MAX

https://riptutorial.com/

92

Return the highest value of a certain column or expression.

E.g.: Highest order total for each customers.

SELECT customer, MAX (total) as max_total
FROM orders

GROUP BY customer

ORDER BY customer

Result:
o o +
| customer | max_total |
fom————— o +
Bob	1300
Carly	1000
Fred	500
Jenny	200
Tess	11500
o o ———— +
« MIN

Return the lowest value of a certain column or expression.

E.g.: Lowest order total for each customers.

SELECT customer, MIN(total) as min_total
FROM orders

GROUP BY customer

ORDER BY customer

Result:
fom tom +
| customer | min_total |
fom tom +
Bob	300
Carly	800
Fred	100
Jenny	200
Tess	2500
fom tom +

Read Group By online: https://riptutorial.com/mysql/topic/3523/group-by

https://riptutorial.com/

93

https://riptutorial.com/mysql/topic/3523/group-by

C_hapter 29: Handling Time Zones

Remarks

When you need to handle time information for a worldwide user base in MySQL, use the
TIMESTAMP data type in your tables.

For each user, store a user-preference timezone column. VARCHAR(64) is a good data type for
that column. When a user registers to use your system, ask for the time zone value. Mine is

Atlantic Time, america/Edmonton. YOUrs might or might not be asia/koikata Of australia/nsw. FOr a
user interface for this user-preference setting, the WordPress.org software has a good example.

Finally, whenever you establish a connection from your host program (Java, php, whatever) to
your DBMS on behalf of a user, issue the SQL command

SET SESSION time_zone=' (whatever tz string the user gave you)'

before you handle any user data involving times. Then all the t1uesTave times you have install will
render in the user's local time.

This will cause all times going in to your tables to be converted to UTC, and all times coming out to
be translated to local. It works properly for NOW() and CURDATE(). Again, you must use
TIMESTAMP and not DATETIME or DATE data types for this.

Make sure your server OS and default MySQL time zones are set to UTC. If you don't do this
before you start loading information into your database, it will be almost impossible to fix. If you
use a vendor to run MySQL, insist they get this right.

Examples

Retrieve the current date and time in a particular time zone.
This fetches the value of now () in local time, in India Standard Time, and then again in UTC.

SELECT NOW () ;

SET time_zone='Asia/Kolkata';
SELECT NOW () ;

SET time_zone='UTC';

SELECT NOW () ;

Convert a stored DATE or DATETIME value to another time zone.

If you have a stored pate or pater1Me (in @ column somewhere) it was stored with respect to some
time zone, but in MySQL the time zone is not stored with the value. So, if you want to convert it to
another time zone, you can, but you must know the original time zone. Using converr_1z () does
the conversion. This example shows rows sold in California in local time.

https://riptutorial.com/ 94

SELECT CONVERT_TZ (date_sold, 'UTC', "America/Los_Angeles') date_sold_local
FROM sales
WHERE state_sold = 'CA'

Retrieve stored TIMESTAMP' values in a particular time zone

This is really easy. All rtvestave values are stored in universal time, and always converted to the
present time_zone Setting whenever they are rendered.

SET SESSION time_zone='America/Los_Angeles';
SELECT timestamp_sold

FROM sales
WHERE state_sold = 'CA'

Why is this? rrurstame values are based on the venerable UNIX « ine « data type. Those UNIX
timestamps are stored as a number of seconds since 1970-01-01 00:00:00 UTC.

Notice rivestave values are stored in universal time. bate and paTterIMe vValues are stored in
whatever local time was in effect when they were stored.

What is my server's local time zone setting?

Each server has a default global time_zone setting, configured by the owner of the server
machine. You can find out the current time zone setting this way:

SELECT QQ@time_zone

Unfortunately, that usually yields the value system, meaning the MySQL time is governed by the
server OS's time zone setting.

This sequence of queries (yes, it's a hack) gives you back the offset in minutes between the
server's time zone setting and UTC.

CREATE TEMPORARY TABLE times (dt DATETIME, ts TIMESTAMP) ;

SET time_zone = 'UTC';
INSERT INTO times VALUES (NOW (), NOW());
SET time_zone = 'SYSTEM';

SELECT dt, ts, TIMESTAMPDIFF (MINUTE, dt, ts)offset FROM times;
DROP TEMPORARY TABLE times;

How does this work? The two columns in the temporary table with different data types is the clue.
pateTIME data types are always stored in local time in tables, and T1uestaves in UTC. So the 1nsert
statement, performed when the time_zone is set to UTC, stores two identical date / time values.

Then, the SELECT statement, is done when the time_zone is set to server local time. TivMesTAMPS
are always translated from their stored UTC form to local time in SELECT statements. parertues
are not. So the rrvestaveorer (unute. . .) operation computes the difference between local and
universal time.

https://riptutorial.com/ 95

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Kludge#Computer_science
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff

What time_zone values are available in my server?
To get a list of possible time_zone values in your MySQL server instance, use this command.

SELECT mysqgl.time_zone_name.name

Ordinarily, this shows the Zonelnfo list of time zones maintained by Paul Eggert at the Internet
Assigned Numbers Authority. Worldwide there are appproximately 600 time zones.

Unix-like operating systems (Linux distributions, BSD distributions, and modern Mac OS
distributions, for example) receive routine updates. Installing these updates on an operating
system lets the MySQL instances running there track the changes in time zone and daylight /
standard time changeovers.

If you get a much shorter list of time zone names, your server is either incompletely configured or
running on Windows. Here are instructions for your server administrator to install and maintain the

Zonelnfo list.

Read Handling Time Zones online: https://riptutorial.com/mysql/topic/7849/handling-time-zones

https://riptutorial.com/

96

https://www.iana.org/time-zones
https://www.iana.org/
https://www.iana.org/
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://riptutorial.com/mysql/topic/7849/handling-time-zones

C_hapter 30: Indexes and Keys

Syntax

» -- Create simple index
CREATE INDEX index_name ON table _name(column_name1 [, column_name2, ...])
+ -- Create unique index

CREATE UNIQUE INDEX index _name ON table _name(column_name1 [, column_name2,
o]

 -- Drop index
DROP INDEX index_name ON tbl_name [algorithm_option | lock_option] ...
algorithm_option: ALGORITHM [=] {DEFAULT|INPLACE|COPY}

lock_option: LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

Remarks

Encepts

An index in a MySQL table works like an index in a book.

Let's say you have a book about databases and you want to find some information about, say,
storage. Without an index (assuming no other aid, such as a table of contents) you'd have to go
through the pages one by one, until you found the topic (that's a "full table scan"). On the other
hand, an index has a list of keywords, so you'd consult the index and see that storage is
mentioned on pages 113-120, 231, and 354. Then you could flip to those pages directly, without
searching (that's a search with an index, somewhat faster).

Of course, the usefulness of the index depends on many things - a few examples, using the simile
above:

« If you had a book on databases and indexed the word "database", you might see that it's
mentioned on pages 1-59, 61-290, and 292-400. That's a lot of pages, and in such a case,
the index is not much help and it might be faster to go through the pages one by one. (In a
database, this is "poor selectivity".)

» For a 10-page book, it makes no sense to make an index, as you may end up with a 10-page
book prefixed by a 5-page index, which is just silly - just scan the 10 pages and be done with
it.

» The index also needs to be useful - there's generally no point to indexing, for example, the

https://riptutorial.com/ 97

frequency of the letter "L" per page.

Examples
Create index

—— Create an index for column 'name' in table 'my_table'
CREATE INDEX idx_name ON my_table (name);

Create unique index

A unique index prevents the insertion of duplicated data in a table. nurL values can be inserted in
the columns that form part of the unique index (since, by definition, a nurt value is different from

any other value, including another vt value)

—— Creates a unique index for column 'name' in table 'my_table'
CREATE UNIQUE INDEX idx_name ON my_table (name) ;

Drop index

—— Drop an index for column 'name' in table 'my_table'
DROP INDEX idx_name ON my_table;

Create composite index

This will create a composite index of both keys, nystring and mydatetime and speed up queries with

both columns in the waere clause.

CREATE INDEX idx_mycol_myothercol ON my_table (mycol, myothercol)

Note: The order is important! If the search query does not include both columns in the wuere
clause, it can only use the leftmost index. In this case, a query with nyco1 in the wuere will use the
index, a query searching for myotherco1 Without also searching for myco1 will not. For more

information check out this blog post.

Note: Due to the way BTREE's work, columns that are usually queried in ranges should go in the
rightmost value. For example, paterive columns are usualy queried like wiErE datecol > '2016-01-

01 00:00:00'. BTREE indexes handle ranges very efficiently but only if the column being queried

as a range is the last one in the composite index.

AUTO_INCREMENT key

CREATE TABLE (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (id),
)i

https://riptutorial.com/

98

https://www.percona.com/blog/2009/06/05/a-rule-of-thumb-for-choosing-column-order-in-indexes/

Main notes:

» Starts with 1 and increments by 1 automatically when you fail to specify it on 1nsert, or
specify it as nuLr.

» The ids are always distinct from each other, but...

» Do not make any assumptions (no gaps, consecutively generated, not reused, etc) about the
values of the id other than being unique at any given instant.

Subtle notes:

* On restart of server, the 'next' value is 'computed' as max (id) +1.

« If the last operation before shutdown or crash was to delete the highest id, that id may be
reused (this is engine-dependent). So, do not trust auto_increments to be permanently
unique; they are only unique at any moment.

* For multi-master or clustered solutions, see auto_increment_offset and
auto_increment_increment.

* Itis OK to have something else as the rrivary key and simply do moex (id). (This is an
optimization in some situations.)

+ Using the ruro_increment as the "partiTrON KEY" IS rarely beneficial; do something different.

» Various operations may "burn" values. This happens when they pre-allocate value(s), then
don't use them: tnsert 16NorE (With dup Key), reprace (which is pereTe plus nsert) and others.
ROLLBACK IS @another cause for gaps in ids.

 In Replication, you cannot trust ids to arrive at the slave(s) in ascending order. Although ids
are assigned in consecutive order, InnoDB statements are sent to slaves in comvrt order.

Read Indexes and Keys online: https://riptutorial.com/mysql/topic/1748/indexes-and-keys

https://riptutorial.com/ 99

https://riptutorial.com/mysql/topic/1748/indexes-and-keys

Chapter 31: INSERT

Syntax

1.

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE] [INTO] tbl_name
[PARTITION (partition_name,...)] [(col_name,...)] {VALUES | VALUE} ({expr |
DEFAULT},...),(...),... [ON DUPLICATE KEY UPDATE col_name=expr [, col_name=expr] ...

]

. INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE] [INTQ] tbl_name

[PARTITION (partition_name,...)] SET col_name={expr | DEFAULT}, ... [ON DUPLICATE
KEY UPDATE col_name=expr [, col_name=expr] ...]

. INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO] tbl_name [PARTITION

(partition_name,...)] [(col_name,...)] SELECT ... [ON DUPLICATE KEY UPDATE
col_name=expr [, col_name=expr] ... |

. An expression expr can refer to any column that was set earlier in a value list. For example,

you can do this because the value for col2 refers to col1, which has previously been
assigned:
INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

. INSERT statements that use VALUES syntax can insert multiple rows. To do this, include

multiple lists of column values, each enclosed within parentheses and separated by
commas. Example:
INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

. The values list for each row must be enclosed within parentheses. The following statement is

illegal because the number of values in the list does not match the number of column names:
INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

. INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO] tbl_name [PARTITION
(partition_name,...)] [(col_name,...)] SELECT ... [ON DUPLICATE KEY UPDATE
col_name=expr, ...]

. With INSERT ... SELECT, you can quickly insert many rows into a table from one or many

tables. For example:
INSERT INTO tbl_temp2 (fld_id) SELECT tbl_temp1.fld_order_id FROM tbl_temp1 WHERE
tbl_temp1.fld_order_id > 100;

Remarks

Official INSERT Syntax

https://riptutorial.com/ 100

http://dev.mysql.com/doc/refman/5.7/en/insert-select.html
http://dev.mysql.com/doc/refman/5.7/en/insert.html

Examples
Basic Insert
INSERT INTO "“table_name” (field_ one , "~field_two) VALUES ('value_one', 'value_two');

In this trivial example, tab1e_name is Where the data are to be added, fie1d_one and field_two are
fields to set data against, and vaiue_one and vaiue_two are the data to do against rieid_one and
field_two respectively.

It's good practice to list the fields you are inserting data into within your code, as if the table
changes and new columns are added, your insert would break should they not be there

INSERT, ON DUPLICATE KEY UPDATE

INSERT INTO "table_name’
("index_field , “other_field_1", “other_field_2")
VALUES
('"index_value', 'insert_value', 'other_value')
ON DUPLICATE KEY UPDATE
‘other_field 1° = 'update_value',
“other_field_2° = VALUES (other_ field_2");

This will tnserT into tab1e_name the specified values, but if the unique key already exists, it will
update the other_fie1d_1 to have a new value.

Sometimes, when updating on duplicate key it comes in handy to use vauzs () in order to access
the original value that was passed to the insert instead of setting the value directly. This way, you
can set different values by using insert and vepate. See the example above where other_fie1d 1 is
set 10 insert_value ON INSERT OF 1O update_value ON UrDATE Whil€ other_field_2 iS always set to

other_value.

Crucial for the Insert on Duplicate Key Update (IODKU) to work is the schema containing a unique
key that will signal a duplicate clash. This unique key can be a Primary Key or not. It can be a
unigue key on a single column, or a multi-column (composite key).

Inserting multiple rows

INSERT INTO "my_table’ (" field 1, "field_ 2°) VALUES
('data_1"', 'data_2"),
('data_1"', 'data_3"),
('data_4', 'data_5'");

This is an easy way to add several rows at once with one nserT statement.

This kind of 'batch' insert is much faster than inserting rows one by one. Typically, inserting 100
rows in a single batch insert this way is 10 times as fast as inserting them all individually.

https://riptutorial.com/ 101

http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_values

Ignoring existing rows

When importing large datasets, it may be preferable under certain circumstances to skip rows that
would usually cause the query to fail due to a column restraint e.g. duplicate primary keys. This
can be done using INSERT TGNORE.

Consider following example database:

SELECT * FROM people’;
=== Produces:
ot +
| 1id | name |

ot +
| 1 | john |
| 2 | anna |
ot +
INSERT IGNORE INTO "people’ (" id’, "name’) VALUES
('2', 'anna'), —-—— Without the IGNORE keyword, this record would produce an error

('3"'", 'mike');

SELECT * FROM people’;
=== Produces:

The important thing to remember is that INSERT IGNORE will also silently skip other errors too,
here is what Mysq| official documentations says:

Data conversions that would trigger errors abort the statement if IGNORE is not >
specified. With IGNORE, invalid values are adjusted to the closest values and
>inserted; warnings are produced but the statement does not abort.

Note :- The section below is added for the sake of completeness, but is not considered best
practice (this would fail, for example, if another column was added into the table).

If you specify the value of the corresponding column for all columns in the table, you can ignore
the column list in the tnserT Statement as follows:

INSERT INTO “my_table® VALUES

('data_1', 'data_2'"),
('data_1', 'data_3'"),
('data_4', 'data_5'");

INSERT SELECT (Inserting data from another Table)

This is the basic way to insert data from another table with the SELECT statement.

https://riptutorial.com/ 102

INSERT INTO "tableA” (' field_one’, "“field_two')
SELECT "“tableB . field_one’, "tableB . field two"
FROM "tableB®
WHERE “tableB' .clmn <> 'someValue'

ORDER BY "tableB'. sorting_clmn";

You can serect * rroM, DUt then tabiea and tabies must have matching column count and
corresponding datatypes.

Columns with auro_1ncremenT are treated as in the rnsert with varues clause.

This syntax makes it easy to fill (temporary) tables with data from other tables, even more so when
the data is to be filtered on the insert.

INSERT with AUTO_INCREMENT + LAST_INSERT _ID()

When a table has an avro_increment PrIMARY KEY, NOrmMally one does not insert into that column.
Instead, specify all the other columns, then ask what the new id was.

CREATE TABLE t (
id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL,
this ...,
that ...,
PRIMARY KEY (id));

INSERT INTO t (this, that) VALUES (..., ...);
SELECT LAST_INSERT_ID() INTO @Qid;
INSERT INTO another_ table (..., t_id, ...) VALUES (..., @id, ...);

Note that 1ast_1nsert_10 () IS tied to the session, so even if multiple connections are inserting into
the same table, each with get its own id.

Your client API probably has an alternative way of getting the vast_1nsert_10 () Without actually
performing a seLect and handing the value back to the client instead of leaving it in an evariabie
inside MySQL. Such is usually preferable.

Longer, more detailed, example

The "normal" usage of IODKU is to trigger "duplicate key" based on some unioue key, not the
AUTO_TNCREMENT PRIMARY KEY. | he following demonstrates such. Note that it does not supply the 14 in
the INSERT.

Setup for examples to follow:

CREATE TABLE iodku (
id INT AUTO_INCREMENT NOT NULL,
name VARCHAR (99) NOT NULL,
misc INT NOT NULL,
PRIMARY KEY (id),
UNIQUE (name)
) ENGINE=InnoDB;

INSERT INTO iodku (name, misc)

https://riptutorial.com/ 103

VALUES

("Leslie', 123),

('Sally', 456);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

o ———— o +
| 1id | name | misc |
o ———— o +
| 1 | Leslie | 123 |
| 2 | Sally | 456

o ———— o +

The case of IODKU performing an "update” and rast_tnsert_10 () retrieving the relevant ia:

INSERT INTO iodku (name, misc)

VALUES
("Sally', 3333) —— should update
ON DUPLICATE KEY UPDATE —— "name’ will trigger "duplicate key"

id = LAST_INSERT_ID (id),
misc = VALUES (misc) ;
SELECT LAST_INSERT_ID () ; —— picking up existing value

The case where IODKU performs an "insert" and rast_1nsert_1p () retrieves the new id:

INSERT INTO iodku (name, misc)
VALUES
('"Dana', 789) —— Should insert
ON DUPLICATE KEY UPDATE
id = LAST_INSERT_ID(id),
misc = VALUES (misc) ;
SELECT LAST_INSERT_ID(); —— picking up new value

Resulting table contents:

SELECT * FROM iodku;

fom e +

| id | name | misc |

fom e +

| 1 | Leslie | 123 |

| 2 | Sally | 3333 | —— IODKU changed this
| 3 | Dana | 789 | —— IODKU added this
fom e +

Lost AUTO_INCREMENT ids

Several 'insert' functions can "burn" ids. Here is an example, using InnoDB (other Engines may

https://riptutorial.com/ 104

work differently):

CREATE TABLE Burn (
id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL,
name VARCHAR (99) NOT NULL,
PRIMARY KEY (id),
UNIQUE (name)
) ENGINE=InnoDB;

INSERT IGNORE INTO Burn (name) VALUES ('first'), ('second');
SELECT LAST_INSERT_ID(); -— 1
SELECT * FROM Burn ORDER BY id;
fom +
first |

INSERT IGNORE INTO Burn (name) VALUES ('second'); -- dup 'IGNOREd', but id=3 is burned
SELECT LAST_INSERT_ID(); —— Still "1" -- can't trust in this situation
SELECT * FROM Burn ORDER BY id;
ot +
| first |
| second |
ot +

INSERT IGNORE INTO Burn (name) VALUES ('third');

SELECT LAST_INSERT_ID(); —— now "4"
SELECT * FROM Burn ORDER BY id; -— note that id=3 was skipped over
Fo— e —————— +
| 1 | first |
| 2 | second |
| 4 | third | —— notice that i1id=3 has been 'burned'
Fo— e —————— +

Think of it (roughly) this way: First the insert looks to see how many rows might be inserted. Then
grab that many values from the auto_increment for that table. Finally, insert the rows, using ids as

needed, and burning any left overs.

The only time the leftover are recoverable is if the system is shutdown and restarted. On restart,

effectively vax (1a) is performed. This may reuse ids that were burned or that were freed up by

peLeTEs Of the highest id(s).

Essentially any flavor of insert (including reprace, which is pereTe + 1nserT) can burn ids. In

InnoDB, the global (not session!) variable innodn autoine 1ock node can be used to control some of

what is going on.

When "normalizing" long strings into an avro 1ncreMenT id, burning can easily happen. This could

lead to overflowing the size of the vt you chose.

Read INSERT online: https://riptutorial.com/mysql/topic/866/insert

https://riptutorial.com/

105

https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html
https://riptutorial.com/mysql/topic/866/insert

C_hapter 32: Install Mysql container with
Docker-Compose

Examples

Simple example with docker-compose

This is an simple example to create a mysql server with docker
1.- create docker-compose.ymil:

Note: If you want to use same container for all your projects, you should create a PATH in your
HOME_PATH. If you want to create it for every project you could create a docker directory in your
project.

version: '2'
services:
cabin_db:
image: mysqgl:latest
volumes:
- "./.mysql-data/db:/var/lib/mysqgl"
restart: always
ports:
- 3306:3306
environment:
MYSQL_ROOT_PASSWORD: rootpw
MYSQL_DATABASE: cabin
MYSQL_USER: cabin
MYSQL_PASSWORD: cabinpw

2.-run it:

cd PATH_TO_DOCKER-COMPOSE.YML
docker-compose up -d

3.- connect to server

mysql -h 127.0.0.1 -u root -P 3306 -p rootpw
Hurray!!
4.- stop server

docker-compose stop

Read Install Mysqgl container with Docker-Compose online:
https://riptutorial.com/mysql/topic/4458/install-mysql-container-with-docker-compose

https://riptutorial.com/ 106

https://riptutorial.com/mysql/topic/4458/install-mysql-container-with-docker-compose

C_hapter 33: Joins

Syntax

 1nnER @nd outer are ignored.

 ruLL iS Not implemented in MySQL.

« "commajoin” (FrRoM a,b WHERE a.x=b.y) iS frowned on; use rroM a JoIN b ON a.x=b.y iNstead.
« FROM a JOIN b ON a.x=b.y includes rows that match in both tables.

« FROM a LEFT JOIN b ON a.x=b.y includes all rows from a, plus matching data from o, or
nurss if there is no matching row.

Examples

Joining Examples
Query to create table on db

CREATE TABLE “user (

"id® smallint (5) unsigned NOT NULL AUTO_INCREMENT,
‘name” varchar (30) NOT NULL,

‘course’ smallint (5) unsigned DEFAULT NULL,
PRIMARY KEY (id')

) ENGINE=InnoDB;

CREATE TABLE " course (

*id® smallint (5) unsigned NOT NULL AUTO_INCREMENT,
‘name’ varchar (50) NOT NULL,

PRIMARY KEY (id')

) ENGINE=InnoDB;

Since we’re using InnoDB tables and know that user.course and course.id are related, we can
specify a foreign key relationship:

ALTER TABLE "user’

ADD CONSTRAINT "FK_course’

FOREIGN KEY (course’') REFERENCES 'course (' id")
ON UPDATE CASCADE;

Join Query (Inner Join)

SELECT user.name, course.name
FROM " user’
INNER JOIN "course on user.course = course.id;

JOIN with subquery ("Derived" table)

https://riptutorial.com/ 107

SELECT x,

FROM (SELECT y, ... FROM ...) AS a
JOIN tbl ON tbl.x = a.y
WHERE ...

This will evaluate the subquery into a temp table, then so1x that to to1.

Prior to 5.6, there could not be an index on the temp table. So, this was potentially very inefficient:

SELECT ...
FROM (SELECT y, ... FROM ...) AS a
JOIN (SELECT x, ... FROM ...) AS b ON b.x = a.y
WHERE ...

With 5.6, the optimizer figures out the best index and creates it on the fly. (This has some
overhead, so it is still not 'perfect'.)

Another common paradigm is to have a subquery to initialize something:

SELECT
@n := @n + 1,

FROM (SELECT @n := 0) AS initialize
JOIN the_real_ table
ORDER BY ...

(Note: this is technically a cross gorn (Cartesian product), as indicated by the lack of on. However it
is efficient because the subquery returns only one row that has to be matched to the n rows in
the_real_tableJ

Retrieve customers with orders -- variations on a theme
This will get all the orders for all customers:

SELECT c.CustomerName, o.0rderID
FROM Customers AS c
INNER JOIN Orders AS o
ON c.CustomerID = o.CustomerID
ORDER BY c.CustomerName, o.0OrderID;

This will count the number of orders for each customer:

SELECT c.CustomerName, COUNT (*) AS 'Order Count'
FROM Customers AS c
INNER JOIN Orders AS o
ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerID;
ORDER BY c.CustomerName;

Also, counts, but probably faster:

SELECT c¢.CustomerName,

https://riptutorial.com/ 108

(SELECT COUNT (*) FROM Orders WHERE CustomerID = c.CustomerID) AS 'Order Count'
FROM Customers AS c
ORDER BY c.CustomerName;

List only the customer with orders.

SELECT c.CustomerName,
FROM Customers AS c
WHERE EXISTS (SELECT * FROM Orders WHERE CustomerID = c.CustomerID)
ORDER BY c.CustomerName;

Full Outer Join

MySQL does not support the rurLt outer gorn, but there are ways to emulate one.

Setting up the data

—-— Table structure for " owners’

DROP TABLE IF EXISTS " owners';

CREATE TABLE "owners (

‘owner_id' int (11) NOT NULL AUTO_INCREMENT,

‘owner® varchar (30) DEFAULT NULL,

PRIMARY KEY (owner_id)

) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=latinl;

INSERT INTO "owners VALUES ('l', 'Ben');
INSERT INTO "owners VALUES ('2', 'Jim');
INSERT INTO ‘“owners VALUES ('3', 'Harry');
INSERT INTO "owners VALUES ('6', 'John');
INSERT INTO "owners VALUES ('9', 'Ellie');

DROP TABLE IF EXISTS "tools’;

CREATE TABLE "“tools ™ (

“tool_id’ int (11) NOT NULL AUTO_INCREMENT,

‘tool® varchar (30) DEFAULT NULL,

‘owner_id' int (11) DEFAULT NULL,

PRIMARY KEY (" tool_id")

) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=latinl;

INSERT INTO "tools® VALUES ('l', 'Hammer', '9'");
INSERT INTO "tools™ VALUES ('2', 'Pliers', '1l'");
INSERT INTO "tools® VALUES ('3', 'Knife', '1'");

INSERT INTO "tools” VALUES ('4', 'Chisel', '2'");
INSERT INTO "tools® VALUES ('5', 'Hacksaw', '1'");
INSERT INTO "tools” VALUES ('6', 'Level', null);
INSERT INTO "tools® VALUES ('7', 'Wrench', null);
INSERT INTO "tools® VALUES ('8', 'Tape Measure', '9');
INSERT INTO "tools' VALUES ('9', 'Screwdriver', null);

https://riptutorial.com/

109

INSERT INTO “tools' VALUES ('10', 'Clamp', null);

What do we want to see?

We want to get a list, in which we see who owns which tools, and which tools might not have an

owner.

The queries

To accomplish this, we can combine two queries by using unton. In this first query we are joining

the tools on the owners by using a Lerr sorn. This will add all of our owners to our resultset,

doesn't matter if they actually own tools.

In the second query we are using a rrcut Jorn to join the tools onto the owners. This way we
manage to get all the tools in our resultset, if they are owned by no one their owner column will

simply contain nurt. By adding a waere-clause which is filtering by owners.owner_id 15 nunL we are
defining the result as those datasets, which have not already been returned by the first query, as

we are only looking for the data in the right joined table.

Since we are using vnton avL the resultset of the second query will be attached to the first queries

resultset.

SELECT "owners . owner , tools.tool
FROM " owners'

LEFT JOIN “tools™ ON ‘owners . owner_id = "tools . owner_id"
UNION ALL
SELECT " owners . owner , tools.tool

FROM " owners'

RIGHT JOIN "tools’ ON "“owners . owner_id = “tools . owner_id"

WHERE "~ owners . owner_id’ IS NULL;

o o +
| owner | tool |
o o +
Ben	Pliers
Ben	Knife
Ben	Hacksaw
Jim	Chisel
Harry	NULL
John	NULL
Ellie	Hammer
Ellie	Tape Measure
NULL	Level
NULL	Wrench
NULL	Screwdriver
NULL	Clamp
o o +

12 rows 1in set (0.00 sec)

Inner-join for 3 tables

let's assume we have three table which can be used for simple website with Tags.

» Fist table is for Posts.

https://riptutorial.com/

110

» Second for Tags
» Third for Tags & Post relation

fist table "videogame"

DT

1 BioShock Infinite 2016-08-08

"tags" table

1 yennefer

2 elizabeth

"tags_meta" table

1 2

SELECT videogame.id,
videogame.title,
videogame.reg_date,
tags.name,
tags_meta.post_id
FROM tags_meta
INNER JOIN videogame ON videogame.id = tags_meta.post_id
INNER JOIN tags ON tags.id = tags_meta.tag_id
WHERE tags.name = "elizabeth"
ORDER BY videogame.reg_date

this code can return all posts which related to that tag "#elizabeth"
Joins visualized

If you are a visually oriented person, this Venn diagram may help you understand the different
types of sorns that exist within MySQL.

https://riptutorial.com/

SELECT <select list>
FROM TableA A
LEFT JOIN TableB B

ON A.Key = B.Key A B

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

SELECT <select list>
FROM TableA A

LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS WULL

. SQL JOINS <

SELECT <sclect_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

@ C L. Moffatt, 2008

Read Joins online: https://riptutorial.com/mysql/topic/2736/joins

https://riptutorial.com/ 112

http://i.stack.imgur.com/Hy7hh.jpg
https://riptutorial.com/mysql/topic/2736/joins

C_hapter 34: JOINS: Join 3 table with the same
name of id.

Examples
Join 3 tables on a column with the same name

CREATE TABLE Tablel (
id INT UNSIGNED NOT NULL,
created_on DATE NOT NULL,
PRIMARY KEY (id)

)

CREATE TABLE Table2 (
id INT UNSIGNED NOT NULL,
personName VARCHAR (255) NOT NULL,
PRIMARY KEY (id)

)

CREATE TABLE Table3 (
id INT UNSIGNED NOT NULL,
accountName VARCHAR (255) NOT NULL,
PRIMARY KEY (id)

after creating the tables you could do a select query to get the id's of all three tables that are the
same

SELECT
tl.id AS tablelld,
t2.id AS table2Id,
t3.id AS table3Id
FROM Tablel t1
LEFT JOIN Table2 t2 ON t2.id
LEFT JOIN Table3 t3 ON t3.id

tl.id
tl.id

Read JOINS: Join 3 table with the same name of id. online:
https://riptutorial.com/mysql/topic/9921/joins--join-3-table-with-the-same-name-of-id-

https://riptutorial.com/ 113

https://riptutorial.com/mysql/topic/9921/joins--join-3-table-with-the-same-name-of-id-

C_hapter 35: JSON

Introduction

As of MySQL 5.7.8, MySQL supports a native JSON data type that enables efficient access to
data in JSON (JavaScript Object Notation) documents.
https://dev.mysqgl.com/doc/refman/5.7/en/json.html

Remarks

Starting from MySQL 5.7.8, MySQL ships with a JSON type. Lots of devs have been saving JSON
data in text columns for a log time but the JSON type is different, the data is saved in binary format
after validation. That avoids the overhead of parsing the text on each read.

Examples
Create simple table with a primary key and JSON field

CREATE TABLE table_name (
id INT NOT NULL AUTO_INCREMENT,
json_col JSON,
PRIMARY KEY (id)

)i

Insert a simple JSON

INSERT INTO
table_name (json_col)
VALUES
("{"City": "Galle", "Description": "Best damn city in the world"}');

That's simple as it can get but note that because JSON dictionary keys have to be surrounded by
double quotes the entire thing should be wrapped in single quotes. If the query succeeds, the data
will be stored in a binary format.

Insert mixed data into a JSON field.

This inserts a json dictionary where one of the members is an array of strings into the table that
was created in another example.

INSERT INTO myjson (dict)
VALUES (' {"opening":"Sicilian", "variations":["pelikan", "dragon", "najdorf"]}"');

Note, once again, that you need to be careful with the use of single and double quotes. The whole
thing has to be wrapped in single quotes.

https://riptutorial.com/ 114

Updating a JSON field

In the previous example we saw how mixed data types can be inserted into a JSON field. What if
we want to update that field? We are going to add scheveningen to the array named variations in
the previous example.

UPDATE
myjson
SET
dict=JSON_ARRAY_ APPEND (dict, '$.variations', 'scheveningen')
WHERE
id = 2;
Notes:

1. The s.variations array in our json dictionary. The $ symbol represents the json
documentation. For a full explaination of json paths recognized by mysq| refer to
https://dev.mysqgl.com/doc/refman/5.7/en/json-path-syntax.html

2. Since we don't yet have an example on querying using json fields, this example uses the
primary key.

Now if we do serLeEcT * FROM myjson We Will see

| id | dict

|

R RSNttt
+

| 2 | {"opening": "Sicilian", "variations": ["pelikan", "dragon", "najdorf", "scheveningen"]}

R et
—+
1 row in set (0.00 sec)

CAST data to JSON type
This converts valid json strings to MySQL JSON type:

SELECT CAST('[1,2,3]' as JSON) ;
SELECT CAST('{"opening":"Sicilian","variations":["pelikan", "dragon", "najdorf"]}' as JSON) ;

Create Json Object and Array
gson_oegect creates JSON Objects:
SELECT JSON_OBJECT ('keyl',coll , 'key2',col2 , 'key3','col3') as myobj;

gson_array creates JSON Array as well:

https://riptutorial.com/ 115

https://dev.mysql.com/doc/refman/5.7/en/json-path-syntax.html

SELECT JSON_ARRAY (coll,col2, 'col3') as myarray;

Note: myobj.key3 and myarray[2] are "col3" as fixed string.

Also mixed JSON data:

SELECT JSON_OBJECT ("opening","Sicilian",
"variations", JSON_ARRAY ("pelikan", "dragon", "najdorf")) as mymixed ;

Read JSON online: https://riptutorial.com/mysql/topic/2985/json

https://riptutorial.com/ 116

https://riptutorial.com/mysql/topic/2985/json

C_hapter 36: Limit and Offset

Syntax

« SELECT column_1 [, column_2]
FROM table 1
ORDER BY order_column
LIMIT row_count [OFFSET row_ offset]
« SELECT column_1 [, column_2]
FROM table 1
ORDER BY order_column
LIMIT [row_offset,] row_count

Remarks

"Limit" could mean "Max number of rows in a table".

"Offset" mean pick from row number (not to be confused by primary key value or any field data
value)

Examples

Limit and Offset relationship

Considering the following users table:

1

Usert
2 User2
3 User3
4 User4
5 User5

In order to constrain the number of rows in the result set of a sz zct query, the LivT clause can be
used together with one or two positive integers as arguments (zero included).

o Clause with one argument

When one argument is used, the result set will only be constrained to the number specified in the

https://riptutorial.com/ 117

http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/select.html

following manner:

SELECT * FROM users ORDER BY id ASC LIMIT 2

User1

2 User2

If the argument's value is o, the result set will be empty.

Also notice that the orper BY Clause may be important in order to specify the first rows of the result
set that will be presented (when ordering by another column).

~-Cclause with two arguments

When two arguments are used in a rivrt clause:

« the first argument represents the row from which the result set rows will be presented — this
number is often mentioned as an offset, since it represents the row previous to the initial row
of the constrained result set. This allows the argument to receive o as value and thus taking
into consideration the first row of the non-constrained result set.

+ the second argument specifies the maximum number of rows to be returned in the result set
(similarly to the one argument's example).

Therefore the query:

SELECT * FROM users ORDER BY id ASC LIMIT 2, 3

Presents the following result set:

User3
4 User4
5 Userb5

Notice that when the offset argument is o, the result set will be equivalent to a one argument vurt
clause. This means that the following 2 queries:

SELECT * FROM users ORDER BY id ASC LIMIT 0, 2

SELECT * FROM users ORDER BY id ASC LIMIT 2

https://riptutorial.com/ 118

Produce the same result set:

1 Userd

2 User2

-x KEYWOrd: alternative syntax

An alternative syntax for the 11t clause with two arguments consists in the usage of the orrser
keyword after the first argument in the following manner:

SELECT * FROM users ORDER BY id ASC LIMIT 2 OFFSET 3

This query would return the following result set:
3 User3

4 User4

Notice that in this alternative syntax the arguments have their positions switched:
+ the first argument represents the number of rows to be returned in the result set;
» the second argument represents the offset.

Read Limit and Offset online: https:/riptutorial.com/mysql/topic/548/limit-and-offset

https://riptutorial.com/ 119

https://riptutorial.com/mysql/topic/548/limit-and-offset

Chapter 37: LOAD DATA INFILE

Syntax

1. LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

2. INTO TABLE tbl_name

3. [CHARACTER SET charset]

4. [{FIELDS | COLUMNS} [TERMINATED BY 'string'] [[OPTIONALLY] ENCLOSED BY 'char"]
5. [LINES [STARTING BY 'string'] [TERMINATED BY 'string']]

6. [[IGNORE number {LINES | ROWS}]

7. [(col_name_or_user_var,...)]

8. [SET col_name = expr,...]

Examples

using LOAD DATA INFILE to load large amount of data to database

Consider the following example assuming that you have a ';-delimited CSV to load into your
database.

1;max;male;manager;12-7-1985
2;jack;male;executive;21-8-1990

1000000;marta; female; accountant;15-6-1992

Create the table for insertion.

CREATE TABLE "employee” (~id® INT NOT NULL ,
‘name’ VARCHAR NOT NULL,
‘sex’ VARCHAR NOT NULL ,
‘designation® VARCHAR NOT NULL ,
‘dob® VARCHAR NOT NULL) 8

Use the following query to insert the values in that table.

LOAD DATA INFILE 'path of the file/file_name.txt'

INTO TABLE employee

FIELDS TERMINATED BY ';' //specify the delimiter separating the values
LINES TERMINATED BY '\r\n'

(id, name, sex, designation, dob)

Consider the case where the date format is non standard.

1;max;male;manager;17-Jan-1985
2;jack;male;executive; 01-Feb-1992

https://riptutorial.com/ 120

1000000;marta; female;accountant; 25-Apr-1993
In this case you can change the format of the qob column before inserting like this.

LOAD DATA INFILE 'path of the file/file_name.txt'

INTO TABLE employee

FIELDS TERMINATED BY ';' //specify the delimiter separating the values
LINES TERMINATED BY '\r\n'

(id, name, sex, designation, @dob)

SET date = STR_TO_DATE (@date, '%$d-%b-%Y');

This example of LOAD DATA INFILE does not specify all the available features.

You can see more references on LOAD DATA INFILE here.

Import a CSV file into a MySQL table

The following command imports CSV files into a MySQL table with the same columns while
respecting CSV quoting and escaping rules.

load data infile '/tmp/file.csv'
into table my_table
fields terminated by ','

optionally enclosed by
escaped by '"!'

lines terminated by '\n'

ignore 1 lines; -- skip the header row

Load data with duplicates

If you use the roap pata nvr1ie command to populate a table with existing data, you will often find
that the import fails due to duplicates. There are several possible ways to overcome this problem.

LOAD DATA LOCAL

If this option has been enabled in your server, it can be used to load a file that exists on the client
computer rather than the server. A side effect is that duplicate rows for unique values are ignored.

LOAD DATA LOCAL INFILE 'path of the file/file_name.txt'
INTO TABLE employee

LOAD DATA INFILE 'fname' REPLACE

When the replace keyword is used duplicate unique or primary keys will result in the existing row
being replaced with new ones

https://riptutorial.com/ 121

http://dev.mysql.com/doc/refman/5.7/en/load-data.html

LOAD DATA INFILE 'path of the file/file_name.txt'
REPLACE INTO TABLE employee

LOAD DATA INFILE 'fname' IGNORE

The opposite of rerrace, existing rows will be preserved and new ones ignored. This behavior is
similar to Locar described above. However the file need not exist on the client computer.

LOAD DATA INFILE 'path of the file/file_name.txt'
IGNORE INTO TABLE employee

Load via intermediary table

Sometimes ignoring or replacing all duplicates may not be the ideal option. You may need to make
decisions based on the contents of other columns. In that case the best option is to load into an
intermediary table and transfer from there.

INSERT INTO employee SELECT * FROM intermediary WHERE ...

import / export
import

SELECT a,b,c INTO OUTFILE 'result.txt' FIELDS TERMINATED BY ', ' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n' FROM table;

Export
LOAD DATA INFILE 'result.txt' INTO TABLE table;

Read LOAD DATA INFILE online: https://riptutorial.com/mysql/topic/2356/load-data-infile

https://riptutorial.com/ 122

https://riptutorial.com/mysql/topic/2356/load-data-infile

C_hapter 38: Log files

Examples

A List

» General log - all queries - see VARIABLE general_log

+ Slow log - queries slower than long_query_time - slow_query_log_file
* Binlog - for replication and backup - log_bin_basename

» Relay log - also for replication

 general errors - mysqld.err

« start/stop - mysql.log (not very interesting) - log_error

* InnoDB redo log - iblog*

See the variables vasedir and dataair for default location for many logs
Some logs are turned on/off by other VARIABLES. Some are either written to a file or to a table.
(Note to reviewers: This needs more details and more explanation.)

Documenters: please include the default location and name for each log type, for both Windows
and *nix. (Or at least as much as you can.)

Slow Query Log

The Slow Query Log consists of log events for queries taking up t0 1ong_query_time Seconds to
finish. For instance, up to 10 seconds to complete. To see the time threshold currently set, issue
the following:

SELECT @Q@long_query_time;

It can be set as a GLOBAL variable, in my.cnf Or my. ini file. Or it can be set by the connection,
though this is unusual. The value can be set between 0 to 10 (seconds). What value to use?

» 10 is so high as to be almost useless;

» 2is a compromise;

» 0.5 and other fractions are possible;

» 0 captures everything; this could fill up disk dangerously fast, but can be very useful.

The capturing of slow queries is either turned on or off. And the file logged to is also specified. The
below captures these concepts:

https://riptutorial.com/ 123

SELECT @@slow_query_log; —-- Is capture currently active? (1=0On, 0=0ff)

SELECT @@slow_query_log_file; —- filename for capture. Resides in datadir
SELECT @@datadir; -- to see current value of the location for capture file
SET GLOBAL slow_query_log=0; —-- Turn Off

—-— make a backup of the Slow Query Log capture file. Then delete it.
SET GLOBAL slow_query_log=1l; -- Turn it back On (new empty file is created)

For more information, please see the MySQL Manual Page The Slow Query Log

Note: The above information on turning on/off the slowlog was changed in 5.6(?); older version
had another mechanism.

The "best" way to see what is slowing down your system:

long_guery_time=...

turn on the slowlog

run for a few hours

turn off the slowlog (or raise the cutoff)

run pt-query-digest to find the 'worst' couple of queries. Or mysgldumpslow -s t

General Query Log

The General Query Log contains a listing of general information from client connects, disconnects,
and queries. It is invaluable for debugging, yet it poses as a hindrance to performance (citation?).

An example view of a General Query Log is seen below:

To determine if the General Log is currently being captured:
SELECT @@general_log; -- 1 = Capture is active; 0 = It is not.
To determine the filename of the capture file:
SELECT @R@general_log_file; -- Full path to capture file

If the fullpath to the file is not shown, the file exists in the datadir.

Windows example:

https://riptutorial.com/ 124

http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
http://i.stack.imgur.com/3dWFH.jpg

| C:\ProgramData\MySQL\MySQL Server 5.7\Data\GuySmiley.log |

When changes are made to the general_10g_rile GLOBAL variable, the new log is saved in the
datadir. However, the fullpath may no longer be reflected by examining the variable.

In the case of no entry for general_10g_rile in the configuration file, it will default to eehostname.log
in the datadir.

Best practices are to turn OFF capture. Save the log file to a backup directory with a filename
reflecting the begin/end datetime of the capture. Deleting the prior file if a filesystem move did not
occur of that file. Establish a new filename for the log file and turn capture ON (all show below).
Best practices also include a careful determination if you even want to capture at the moment.
Typically, capture is ON for debugging purposes only.

A typical filesystem filename for a backed-up log might be:

/LogBackup/GenerallLog_20160802_1520_to_20160802_1815.10g

where the date and time are part to the filename as a range.

For Windows note the following sequence with setting changes.

SELECT @Q@general_log; ——- 0. Not being captured

SELECT Q@general_log_file; -- C:\ProgramData\MySOL\MySQL Server 5.6\Data\GuySmiley.log
SELECT QQ@datadir; —- C:\ProgramData\MySQL\MySQL Server 5.7\Data\

SET GLOBAL general_log_file='GenerallogBegin_20160803_1420.1log'; —- datetime clue

SET GLOBAL general_log=l; —-- Turns on actual log capture. File is created under “datadir’
SET GLOBAL general_log=0; —-- Turn logging off

Linux is similar. These would represent dynamic changes. Any restart of the server would pick up
configuration file settings.

As for the configuration file, consider the following relevant variable settings:

[mysqgld]

general_log_file /path/to/currentquery.log

general_log =1

In addition, the variable 10g_output can be configured for tasre output, not just rrre. For that,
please see Destinations.

Please see the MySQL Manual Page The General Query Log.

https://riptutorial.com/ 125

http://dev.mysql.com/doc/refman/5.7/en/log-destinations.html
http://dev.mysql.com/doc/refman/5.7/en/query-log.html

Error Log

The Error Log is populated with start and stop information, and critical events encountered by the
server.

The following is an example of its contents:

‘binlog’

nt butfer pool p

bled

The variable 104_error holds the path to the log file for error logging.

In the absence of a configuration file entry for 10g_error, the system will default its values to
@ehostname.efr in the datadir. Note that 10g_error is NOt @ dynamic variable. As such, changes are
done through a cnf or ini file changes and a server restart (or by seeing "Flushing and Renaming
the Error Log File" in the Manual Page link at the bottom here).

Logging cannot be disabled for errors. They are important for system health while troubleshooting
problems. Also, entries are infrequent compared to the General Query Log.

The GLOBAL variable 104_warnings sets the level for verbosity which varies by server version. The
following snippet illustrates:

SELECT Q@log_warnings;
SET GLOBAL log_warnings=2; —-- setting above 1 increases output (see server version)

make a note of your prior setting

log_warnings @S Seen above is a dynamic variable.

Configuration file changes in cnr and in: files might look like the following.

[mysqgld]

log_error /path/to/CurrentError.log

2

log_warnings

MySQL 5.7.2 expanded the warning level verbosity to 3 and added the GLOBAL
log_error_verbosity. Again, it was introduced in 5.7.2. It can be set dynamically and checked as a
variable or set via cnr Or ini configuration file settings.

As of MySQL 5.7.2:
[mysqgld]
log_error = /path/to/CurrentError.log
log_warnings = 2
log_error_verbosity = 3

Please see the MySQL Manual Page entitled The Error Log especially for Flushing and Renaming

https://riptutorial.com/ 126

http://i.stack.imgur.com/upW0z.jpg
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity
http://i.stack.imgur.com/upW0z.jpg

the Error Log file, and its Error Log Verbosity section with versions related t0 10g_warnings and

error_log_verbosity.

Read Log files online: https://riptutorial.com/mysql/topic/5102/log-files

https://riptutorial.com/ 127

https://riptutorial.com/mysql/topic/5102/log-files

C_hapter 39: Many-to-many Mapping table

Remarks

» Lack of an auto_1ncrement id for this table -- The PK given is the 'natural’ PK; there is no good
reason for a surrogate.

» MEDTUMINT -- ThiS is a reminder that all ints should be made as small as is safe (smaller =
faster). Of course the declaration here must match the definition in the table being linked to.

» unstenep - Nearly all INTs may as well be declared non-negative

» nor nurL -- Well, that's true, isn't it?

* 1nnobB -- More effecient than MyISAM because of the way the rrivary kev is clustered with
the data in InnoDB.

* INDEX(y_id, x_id) -- The privary key makes it efficient to go one direction; the makes the
other direction efficient. No need to say unrour; that would be extra effort on 1nserTs.

* In the secondary index, saying just noex (v_id) would work because it would implicit include
x_id. But | would rather make it more obvious that | am hoping for a 'covering' index.

You may want to add more columns to the table; this is rare. The extra columns could provide
information about the relationship that the table represents.

You may want to add rore1en kEY COnstraints.

Examples
Typical schema

CREATE TABLE XtoY (
No surrogate id for this table

x_id MEDIUMINT UNSIGNED NOT NULL, —-— For JOINing to one table

y_id MEDIUMINT UNSIGNED NOT NULL, —-— For JOINing to the other table
Include other fields specific to the 'relation'

PRIMARY KEY (x_id, y_id), —— When starting with X

INDEX (y_id, x_id) —— When starting with Y

) ENGINE=InnoDB;

(See Remarks, below, for rationale.)

Read Many-to-many Mapping table online: https:/riptutorial.com/mysql/topic/4857/many-to-many-
mapping-table

https://riptutorial.com/ 128

https://riptutorial.com/mysql/topic/4857/many-to-many-mapping-table
https://riptutorial.com/mysql/topic/4857/many-to-many-mapping-table

Chapter 40: MylSAM Engine

Remarks

Over the years, InnoDB has improved to the point where it is almost always better than MyISAM,
at least the currently supported versions. Bottom line: Don't use MylSAM, except maybe for tables
that are truly temporary.

One advantage of MyISAM over InnoDB remains: It is 2x-3x smaller in space required on disk.

When InnoDB first came out, MyISAM was still a viable Engine. But with the advent of XtraDB and
5.6, InnoDB became "better" than MyISAM in most benchmarks.

Rumor has it that the next major version will eliminate the need for MyISAM by making truly
temporary InnoDB tables and by moving the system tables into InnoDB.

Examples
ENGINE=MyISAM

CREATE TABLE foo (

) ENGINE=MyISAM;

Read MyISAM Engine online: https://riptutorial.com/mysql/topic/4710/myisam-engine

https://riptutorial.com/ 129

https://riptutorial.com/mysql/topic/4710/myisam-engine

C_hapter 41: MySQL Admin

Examples
Change root password

mysgladmin -u root -p'old-password' password 'new-password'

Drop database
Useful for scripting to drop all tables and deletes the database:

mysgladmin -uf[username] -pl[password] drop [database]

Use with extreme caution.

To pror database as a SQL Script (you will need DROP privilege on that database):

DROP DATABASE database_name

or

DROP SCHEMA database_name

Atomic RENAME & Table Reload

RENAME TABLE t TO t_old, t_copy TO t;

No other sessions can access the tables involved while RENAME TABLE executes, so the
rename operation is not subject to concurrency problems.

Atomic Rename is especially for completely reloading a table without waiting for perere and load to
finish:

CREATE TABLE new LIKE real;

load "new’ by whatever means - LOAD DATA, INSERT, whatever
RENAME TABLE real TO old, new TO real;

DROP TABLE old;

Read MySQL Admin online: https:/riptutorial.com/mysql/topic/2991/mysql-admin

https://riptutorial.com/ 130

https://riptutorial.com/mysql/topic/2991/mysql-admin

C_hapter 42: MySQL client

Syntax

* mysqgl [OPTIONS] [database_name]

Parameters

-D ——database=name
—--delimiter=str

—e ——execute='command'
—-h ——host=name

—-p ——password=name

-p (without password)
-P ——port=#

-s ——silent

=53
-S ——socket=path

—-skip-column-names
-u ——-user=name

-U —-safe-updates ——i-am—
a—dummy

-V —-version

Examples

Base login

name of the database

set the statement delimiter. The default one is "}’

execute command

hostname to connect to

password Note: there is no space between -p and the password
the password will be prompted for

port number

silent mode, produce less output. Use \t as column separator
like -s, but omit column names

specify the socket (Unix) or named pipe (Windows) to use when
connecting to a local instance

omit column names
username

login with the variable sq1_safe_updates=on. This will allow only
peLeTE and uvepate that explicitly use keys

print the version and exit

To access MySQL from the command line:

https://riptutorial.com/

131

mysgl —--user=username —--password=pwd —-host=hostname test_db

This can be shortened to:

mysgl —-u username -p password —h hostname test_db

By omitting the passwora value MySQL will ask for any required password as the first input. If you
specify password the client will give you an 'insecure’ warning:

mysgl —-u=username -p —-h=hostname test_db
For local connections —-socket can be used to point to the socket file:

mysql —-user=username —--password=pwd —--host=localhost —--socket=/path/to/mysgld.sock test_db

Omitting the socket parameter will cause the client to attempt to attach to a server on the local
machine. The server must be running to connect to it.

Execute commands

This set of example show how to execute commands stored in strings or script files, without the
need of the interactive prompt. This is especially useful to when a shell script needs to interact
with a database.

Execute command from a string

$ mysgl -uroot -proot test -e'select * from people'

o to—— +
| 1id | name | gender |
o to—— +
| 1 | Kathy | £ |
| 2 | John | m |
o to—— +

To format the output as a tab-separated grid, use the —-siient parameter:

$ mysgl —-uroot —-proot test -s —-e'select * from people'
Ysgq b peop

id name gender
1 Kathy £
2 John m

To omit the headers:

$ mysgl —-uroot -proot test -ss -e'select * from people'

1 Kathy £
2 John m

https://riptutorial.com/

132

Execute from script file:

$ mysgl -uroot -proot test < my_script.sqgl

$ mysgl -uroot -proot test -e'source my_script.sqgl'

Write the output on a file

$ mysgl -uroot -proot test < my_script.sgl > out.txt

$ mysgl -uroot -proot test -s -e'select * from people' > out.txt

Read MySQL client online: https:/riptutorial.com/mysql/topic/5619/mysql-client

https://riptutorial.com/ 133

https://riptutorial.com/mysql/topic/5619/mysql-client

Chapter 43: MySQL LOCK TABLE

Syntax

« LOCK TABLES table_name [READ | WRITE]; // Lock Table

« UNLOCK TABLES:; // Unlock Tables

Remarks

Locking is used to solve concurrency problems.Locking is required only when running a
transaction, that first read a value from a database and later write that value in to the database.
Locks are never required for self-contained insert, update, or delete operations.

There are two kinds of locks available
READ LOCK - when a user is only reading from a table.
WRITE LOCK - when a user is doing both reading and writing to a table.

When a user holds a wriTE rLock on a table, no other users can read or write to that table. When a
user holds a reap ock on a table, other users can also read or hold a reap rocxk, but no user can
write or hold a wrrTE 1OCK ON that table.

If default storage engine is InnoDB, MySQL automatically uses row level locking so that multiple
transactions can use same table simultaneously for read and write, without making each other
wait.

For all storage engines other than InnoDB, MySQL uses table locking.

For more details about table lock See here

Examples

Mysql Locks

Table locks can be an important tool for encine=my1sam, but are rarely useful for encine=1nnops. If
you are tempted to use table locks with InnoDB, you should rethink how you are working with
fransactions.

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with
other sessions for access to tables, or to prevent other sessions from modifying tables during
periods when a session requires exclusive access to them. A session can acquire or release locks
only for itself. One session cannot acquire locks for another session or release locks held by
another session.

https://riptutorial.com/ 134

http://dev.mysql.com/doc/refman/5.7/en/lock-tables.html

Locks may be used to emulate transactions or to get more speed when updating tables. This is
explained in more detail later in this section.

Command:Lock TABLES table_name READ|WRITE;
you can assign only lock type to a single table;

Example (READ LOCK):

LOCK TABLES table_name READ;

Example (WRITE LOCK):

LOCK TABLES table_name WRITE;

To see lock is applied or not, use following Command

SHOW OPEN TABLES;

To flush/remove all locks, use following command:

UNLOCK TABLES;

EXAMPLE:

LOCK TABLES products WRITE:
INSERT INTO products (id,product_name) SELECT id,old_product_name FROM old_products;
UNLOCK TABLES;

Above example any external connection cannot write any data to products table until unlocking
table product

EXAMPLE:

LOCK TABLES products READ:
INSERT INTO products (id,product_name) SELECT id,old_product_name FROM old_products;
UNLOCK TABLES;

Above example any external connection cannot read any data from products table until unlocking
table product

Row Level Locking

If the tables use InnoDB, MySQL automatically uses row level locking so that multiple transactions
can use same table simultaneously for read and write, without making each other wait.

If two transactions trying to modify the same row and both uses row level locking, one of the
transactions waits for the other to complete.

https://riptutorial.com/ 135

Row level locking also can be obtained by using serect ... ror uvepaTe Statement for each rows
expected to be modified.

Consider two connections to explain Row level locking in detalil

Connection 1

START TRANSACTION;
SELECT ledgerAmount FROM accDetails WHERE id = 1 FOR UPDATE;

In connection 1, row level lock obtained by serect ... For uvepate Statement.

Connection 2

UPDATE accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1;

When some one try to update same row in connection 2, that will wait for connection 1 to finish
transaction or error message will be displayed according to the innodo_1ock_wait_timeout Setting,
which defaults to 50 seconds.

Error Code: 1205. Lock wait timeout exceeded; try restarting transaction

To view details about this lock, run szow ENGINE INNODB STATUS

———TRANSACTION 1973004, ACTIVE 7 sec updating

mysgl tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 360, 1 row lock(s)

MySQL thread id 4, OS thread handle 0x7f996beac700, query id 30 localhost root update
UPDATE accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1

******* TRX HAS BEEN WAITING 7 SEC FOR THIS LOCK TO BE GRANTED:

Connection 2

UPDATE accDetails SET ledgerAmount = ledgerAmount + 250 WHERE id=2;
1 row(s) affected

But while updating some other row in connection 2 will be executed without any error.

Connection 1

UPDATE accDetails SET ledgerAmount = ledgerAmount + 750 WHERE id=1;
COMMIT;
1 row(s) affected

Now row lock is released, because transaction is commited in Connection 1.
Connection 2

UPDATE accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1;
1 row(s) affected

https://riptutorial.com/ 136

The update is executed without any error in Connection 2 after Connection 1 released row lock by
finishing the transaction.

Read MySQL LOCK TABLE online: https://riptutorial.com/mysql/topic/5233/mysql-lock-table

https://riptutorial.com/ 137

https://riptutorial.com/mysql/topic/5233/mysql-lock-table

C_hapter 44: Mysql Performance Tips

Examples

Select Statement Optimization

Below are some tips to remember while we are writing a select query in MySQL that can help us
and reduce our query time:-

1. Whenever we use where in a large table we should make sure the column in where clause
are index or not. Ex:- Select * from employee where user_id > 2000. user_id if indexed then
will speed up the evaluation of the query atlot. Indexes are also very important during joins
and foreign keys.

2. When you need the smaller section of content rather then fetching whole data from table, try
to use limit. Rather then writing Ex:- Select * from employee. If you need just first 20
employee from lakhs then just use limit Ex:- Select * from employee LIMIT 20.

3. You can also optimize your query by providing the column name which you want in resultset.
Rather then writing Ex:- Select * from employee. Just mention column name from which you
need data if you table has lots of column and you want to have data for few of them. Ex:-
Select id, name from employee.

4. Index column if you are using to verify for NULL in where clause. If you have some
statement as SELECT * FROM tbl_name WHERE key_col IS NULL; then if key_col is
indexed then query will be evaluated faster.

Optimizing Storage Layout for InnoDB Tables

1. In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or
several columns that form a long composite value) wastes a lot of disk space. The primary
key value for a row is duplicated in all the secondary index records that point to the same
row. Create an AUTO_INCREMENT column as the primary key if your primary key is long.

2. Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns
with many NULL values. A CHAR(N) column always takes N characters to store data, even if
the string is shorter or its value is NULL. Smaller tables fit better in the buffer pool and
reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length
character sets, such as utf8 or sjis, CHAR(N) columns occupy a variable amount of
space, but still at least N bytes.

3. For tables that are big, or contain lots of repetitive text or numeric data, consider using
COMPRESSED row format. Less disk I/O is required to bring data into the buffer pool, or to
perform full table scans. Before making a permanent decision, measure the amount of
compression you can achieve by using COMPRESSED versus COMPACT row format.

https://riptutorial.com/ 138

Caveat: Benchmarks rarely show better than 2:1 compression and there is a lot of overhead
in the buffer_pool for COMPRESSED.

4. Once your data reaches a stable size, or a growing table has increased by tens or some
hundreds of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the
table and compact any wasted space. The reorganized tables require less disk I/O to
perform full table scans. This is a straightforward technique that can improve performance
when other techniques such as improving index usage or tuning application code are not
practical. Caveat: Regardless of table size, OPTIMIZE TABLE should only rarely be
performed. This is because it is costly, and rarely improves the table enough to be worth it.
InnoDB is reasonably good at keeping its B+Trees free of a lot of wasted space.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The
benefits come from improved packing of data within indexes, and reduced
fragmentation within the tablespaces and on disk. The benefits vary depending on the
data in each table. You may find that there are significant gains for some and not for
others, or that the gains decrease over time until you next optimize the table. This
operation can be slow if the table is large or if the indexes being rebuilt do not fit into
the buffer pool. The first run after adding a lot of data to a table is often much slower
than later runs.

Building a composite index

In many situations, a composite index performs better than an index with a single column. To build
an optimal composite index, populate it with columns in this order.

» = column(s) from the waere clause first. (eg, pex (a,b, ...) fOr WHERE a=12 AND b='xyz' ...)

» 1n column(s); the optimizer may be able to leapfrog through the index.

* One "range" (eg x BeTweEEN 3 AND 9, name LIKE 'J%') It won't use anything past the first range
column.

* All the columns in crour By, in order

* All the columns in orpEr BY, In Order. Works only if all are asc or all are pesc or you are using
8.0.

Notes and exceptions:

» Don't duplicate any columns.

 Skip over any cases that don't apply.

* If you don't use all the columns of wuere, there is no need to go on to crour sy, etc.

» There are cases where it is useful to index only the orper By CcOluMN(S), ignoring wxeRE.
« Don't "hide" a column in a function (eg pate (x) = ... cannot use x in the index.)
 'Prefix' indexing (eg, text_co1(29)) is unlikely to be helpful; may hurt.

More details and tips .

Read Mysql Performance Tips online: https://riptutorial.com/mysql/topic/5752/mysql-performance-
tips

https://riptutorial.com/ 139

https://mariadb.com/kb/en/mariadb/compound-composite-indexes/
https://riptutorial.com/mysql/topic/5752/mysql-performance-tips
https://riptutorial.com/mysql/topic/5752/mysql-performance-tips

C_hapter 45: MySQL Unions

Syntax

« SELECT column_name(s) FROM table1 UNION SELECT column_name(s) FROM table2;

« SELECT column_name(s) FROM table1 UNION ALL SELECT column_name(s) FROM
table2;

« SELECT column_name(s) FROM table1 WHERE col_name="XYZ" UNION ALL SELECT
column_name(s) FROM table2 WHERE col_name="XYZ";

Remarks

unton prstINcT IS the same as uvnrton; it is slower than unton an because of a de-duplicating pass. A
good practice is to always spell out nrstincT or ant, thereby signaling that you thought about which
to do.

Examples

Union operator

The UNION operator is used to combine the result-set (only distinct values) of two or more
SELECT statements.

Query: (To selects all the different cities (only distinct values) from the "Customers" and the
"Suppliers" tables)

SELECT City FROM Customers
UNION

SELECT City FROM Suppliers
ORDER BY City;

Result:

Number of Records: 10

Aachen
Albuquerque
Anchorage
Annecy
Barcelona
Barquisimeto
Bend

Bergamo
Berlin

Bern

https://riptutorial.com/ 140

Union ALL

UNION ALL to select all (duplicate values also) cities from the "Customers" and "Suppliers" tables.

Query:

SELECT City FROM Customers
UNION ALL

SELECT City FROM Suppliers
ORDER BY City;

Result:

Number of Records: 12

Aachen
Albuquerque
Anchorage
Ann Arbor
Annecy
Barcelona
Barquisimeto
Bend
Bergamo
Berlin
Berlin

Bern

UNION ALL With WHERE

UNION ALL to select all(duplicate values also) German cities from the "Customers" and
"Suppliers" tables. Here country="cermany" is to be specified in the where clause.

Query:

SELECT City, Country FROM Customers
WHERE Country='Germany'

UNION ALL

SELECT City, Country FROM Suppliers
WHERE Country='Germany'

ORDER BY City;

Result:

Number of Records: 14

Aachen Germany

Berlin Germany

https://riptutorial.com/

141

Berlin
Brandenburg
Cunewalde
Cuxhaven

Frankfurt

Frankfurt a.M.

KoIn
Leipzig
Mannheim
Munchen
Muinster

Stuttgart

Read MySQL Unions online: https:/riptutorial.com/mysql/topic/5376/mysqgl-unions

Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany

Germany

https://riptutorial.com/

142

https://riptutorial.com/mysql/topic/5376/mysql-unions

C_hapter 46: mysqglimport

Parameters
——delete -D empty the table before importing the text file

--fields-optionally-enclosed-by define the character that quotes the fields

--fields-terminated-by field terminator
——ignore -i ignore the ingested row in case of duplicate-keys
——lines-terminated-by define row terminator
-—password -p password
--port -P port
——replace -r overwrite the old entry row in case of duplicate-keys
——user -u username
——where -w specify a condition
Remarks

mysqlimport Will use the name of the imported file, after stripping the extension, to determine the
destination table.

Examples

Basic usage

Given the tab-separated file employee.txt

1\t Arthur Dent
2\t Marvin
3 \t Zaphod Beeblebrox

$ mysgl --user=user --password=password mycompany —e 'CREATE TABLE employee (id INT, name
VARCHAR (100), PRIMARY KEY (id))'

$ mysglimport —--user=user —--password=password mycompany employee.txt

https://riptutorial.com/ 143

Using a custom field-delimiter

Given the text file employee.ixt

1|Arthur Dent
2|Marvin
3|Zaphod Beeblebrox

$ mysglimport --fields-terminated-by='|' mycompany employee.txt

Using a custom row-delimiter
This example is useful for windows-like endings:

$ mysglimport --lines-terminated-by='\r\n' mycompany employee.txt

Handling duplicate keys

Given the table Employee

3 Yooden Vranx

And the file employee.txt

1 \t Arthur Dent
2\t Marvin
3 \t Zaphod Beeblebrox

The —-ignore oOption will ignore the entry on duplicate keys
$ mysglimport —--ignore mycompany employee.txt

1 Arthur Dent
2 Marvin
3 Yooden Vranx
The —-rep1ace option will overwrite the old entry

$ mysglimport —--replace mycompany employee.txt

https://riptutorial.com/ 144

1 Arthur Dent
2 Marvin

3 Zaphod Beeblebrox

Conditional import

$ mysglimport --where="id>2" mycompany employee.txt
Yy

Import a standard csv

$ mysglimport
——fields-optionally-enclosed-by="""
——fields-terminated-by=,
——lines-terminated-by="\r\n"
mycompany employee.csv

Read mysqlimport online: https://riptutorial.com/mysql/topic/5215/mysqglimport

https://riptutorial.com/ 145

https://riptutorial.com/mysql/topic/5215/mysqlimport

Chapter 47: NULL

Examples

Uses for NULL

» Data not yet known - such as end_date, rating

« Optional data - such as midadie_initial (though that might be better as the empty string)
0/0 - The result of certain computations, such as zero divided by zero.

NULL is not equal to "" (blank string) or 0 (in case of integer).

* others?

Testing NULLs

* 15 nunL/ 18 NoT NULL -- = NuLL does not work like you expect.
* x <=> yis a "null-safe" comparison.

In a terT Jo1n tests for rows of a for which there is not a corresponding row in ».

SELECT ...
FROM a
LEFT JOIN b ON ...
WHERE b.id IS NULL

Read NULL online: https://riptutorial.com/mysql/topic/6757/null

https://riptutorial.com/ 146

https://riptutorial.com/mysql/topic/6757/null

C_hapter 48: One to Many

Introduction

The idea of one to many (1:M) concerns the joining of rows to each other, specifically cases where
a single row in one table corresponds to many rows in another.

1:M is one-directional, that is, any time you query a 1:M relationship, you can use the 'one' row to
select 'many' rows in another table, but you cannot use a single 'many' row to select more than a
single 'one' row.

Remarks

For most cases, working with a 1:M relationship requires us to understand Primary Keys and
Foreign Keys.

A Primary key is a column in a table where any single row of that column represents a single
entity, or, selecting a value in a primary key column results in exactly one row. Using the above
examples, an EMP_ID represents a single employee. If you query for any single EMP_ID, you will
see a single row representing the corresponding employee.

A Foreign Key is a column in a table that corresponds to the primary key of another different
table. From our example above, the MGR_ID in the EMPLOYEES table is a foreign key. Generally
to join two tables, you'll join them based on the primary key of one table and the foreign key in
another.

Examples

Example Company Tables

Consider a company where every employee who is a manager, manages 1 or more employees,
and every employee has only 1 manager.

This results in two tables:

EMPLOYEES
@M
Johnny Appleseed
EO2 Erin Macklemore MO1
EO3 Colby Paperwork MO3
E04 Ron Sonswan MO1

https://riptutorial.com/ 147

MANAGERS

w FIRST_NAME | LAST_NAME

Loud McQueen
MO02 Bossy Pants
MO03 Barrel Jones

Get the Employees Managed by a Single Manager

SELECT e.emp_id , e.first_name , e.last_name FROM employees e INNER JOIN managers m ON m.mgr_id
= e.mgr_id WHERE m.mgr_id = 'MO1' ;

Results in:
o e e
Erin Macklemore
E04 Ron Sonswan

Ultimately, for every manager we query for, we will see 1 or more employees returned.
Get the Manager for a Single Employee

Consult the above example tables when looking at this example.

SELECT m.mgr_id , m.first_name , m.last_name FROM managers m INNER JOIN employees e ON e.mgr_id
= m.mgr_id WHERE e.emp_id = 'E03' ;

w FIRST_NAME | LAST_NAME

Barrel Jones

As this is the inverse of the above example, we know that for every employee we query for, we will
only ever see one corresponding manager.

Read One to Many online: https:/riptutorial.com/mysql/topic/9600/one-to-many

https://riptutorial.com/ 148

https://riptutorial.com/mysql/topic/9600/one-to-many

Chapter 49: ORDER BY

Examples

Contexis

The clauses in a serect have a specific order:

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ...
ORDER BY ... —- goes here
LIMIT ... OFFSET ...;

(SELECT ...) UNION (SELECT ...) ORDER BY ... -- for ordering the result of the UNION.

SELECT ... GROUP_CONCAT (DISTINCT x ORDER BY ... SEPARATOR ...)

ALTER TABLE ... ORDER BY ... —-— probably useful only for MyISAM; not for InnoDB

Basic

ORDER BY x

x can be any datatype.

* wuLLs precede non-NULLs.

The default is asc (lowest to highest)

Strings (varcrar, etc) are ordered according the corrarron of the declaration
» exuMs are ordered by the declaration order of its strings.

ASCending / DESCending

ORDER BY x ASC -- same as default

ORDER BY x DESC -- highest to lowest

ORDER BY lastname, firstname -- typical name sorting; using two columns

ORDER BY submit_date DESC -- latest first

ORDER BY submit_date DESC, id ASC -- latest first, but fully specifying order.

® ASC = ASCENDING, DESC = DESCENDING

* nurns come first even for pesc.

* In the above examples, INDEX (x), INDEX (lastname, firstname), INDEX (submit_date) May
significantly improve performance.

But... Mixing asc and pesc, as in the last example, cannot use a composite index to benefit. Nor will
INDEX (submit_date DESC, id asc) help -- "pesc" is recognized syntactically in the mnoex declaration,
but ignored.

Some tricks

https://riptutorial.com/ 149

ORDER BY FIND_IN_SET (card_type, "MASTER-CARD,VISA,DISCOVER")
ORDER BY x IS NULL, x -- order by "x , but put "NULLs last.

Custom ordering

SELECT * FROM some_table WHERE id IN (118, 17, 113, 23, 72)
ORDER BY FIELD(id, 118, 17, 113, 23, 72);

Returns the result in the specified order of ids.

118
17
113
23

72

—— sort 'MASTER-CARD' first.

Useful if the ids are already sorted and you just need to retrieve the rows.

Read ORDER BY online: https://riptutorial.com/mysql/topic/5469/order-by

https://riptutorial.com/

150

https://riptutorial.com/mysql/topic/5469/order-by

C_hapter 50: Partitioning

Remarks

+ RANGE partitioning. This type of partitioning assigns rows to partitions based on column
values falling within a given range.

« LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected
based on columns matching one of a set of discrete values.

« HASH partitioning. With this type of partitioning, a partition is selected based on the value
returned by a user-defined expression that operates on column values in rows to be inserted
into the table. The function may consist of any expression valid in MySQL that yields a
nonnegative integer value. An extension to this type, rinear HasH, is also available.

« KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that
only one or more columns to be evaluated are supplied, and the MySQL server provides its
own hashing function. These columns can contain other than integer values, since the
hashing function supplied by MySQL guarantees an integer result regardless of the column
data type. An extension to this type, rinear key, is also available.

Examples

RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the varues ress tuan operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain
of 20 video stores, numbered 1 through 20:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR (30),
lname VARCHAR (30),
hired DATE NOT NULL DEFAULT '1970-01-01"',
separated DATE NOT NULL DEFAULT '9999-12-31°',
job_code INT NOT NULL,
store_id INT NOT NULL
)i

This table can be partitioned by range in a number of ways, depending on your needs. One way
would be to use the store_id column. For instance, you might decide to partition the table 4 ways
by adding a partiTION BY RANGE Clause as shown here:

ALTER TABLE employees PARTITION BY RANGE (store_id) (
PARTITION pO VALUES LESS THAN (6),

https://riptutorial.com/ 151

PARTITION pl VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN MAXVALUE

MAXVALUE represents an integer value that is always greater than the largest possible
integer value (in mathematical language, it serves as a least upper bound).

based on MySQL official document.
LIST Partitioning

List partitioning is similar to range partitioning in many ways. As in partitioning by RANGE, each
partition must be explicitly defined. The chief difference between the two types of partitioning is
that, in list partitioning, each partition is defined and selected based on the membership of a
column value in one of a set of value lists, rather than in one of a set of contiguous ranges of
values. This is done by using partiTION BY LIST (expr) Where expr is @ column value or an
expression based on a column value and returning an integer value, and then defining each
partition by means of a vaLues 1y (value_list), Where vailue_1ist is @ comma-separated list of
integers.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the create TapLE Statement shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR (30),
lname VARCHAR (30),
hired DATE NOT NULL DEFAULT '1970-01-01",
separated DATE NOT NULL DEFAULT '9999-12-31"',
job_code INT,
store_id INT

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following
table.

Store ID Numbers

North 3,5,6,9,17
East 1,2,10,11,19, 20
West 4,12, 13, 14,18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in
the same partition

https://riptutorial.com/ 152

http://dev.mysql.com/doc/refman/5.7/en/partitioning-range.html

ALTER TABLE employees PARTITION BY LIST (store_id) (
PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),
PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)

)i

based on MySQL official document.
HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a
predetermined number of partitions. With range or list partitioning, you must specify explicitly into
which partition a given column value or set of column values is to be stored; with hash partitioning,
MySQL takes care of this for you, and you need only specify a column value or expression based
on a column value to be hashed and the number of partitions into which the partitioned table is to
be divided.

The following statement creates a table that uses hashing on the store_id column and is divided
into 4 partitions:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR (30),
lname VARCHAR (30),
hired DATE NOT NULL DEFAULT '1970-01-01"',
separated DATE NOT NULL DEFAULT '9999-12-31°',
job_code INT,
store_id INT
)
PARTITION BY HASH (store_id)
PARTITIONS 4;

If you do not include a rarT1TIONS ClAuse, the number of partitions defaults to 1.
based on MySQL official document.

Read Partitioning online: https://riptutorial.com/mysql/topic/5128/partitioning

https://riptutorial.com/ 153

http://dev.mysql.com/doc/refman/5.7/en/partitioning-list.html
http://dev.mysql.com/doc/refman/5.7/en/partitioning-hash.html
https://riptutorial.com/mysql/topic/5128/partitioning

C_hapter 51: Performance Tuning

Syntax

* Don't use DISTINCT and GROUP BY in the same SELECT.
» Don't paginate via OFFSET, "remember where you left off".
« WHERE (a,b) = (22,33) does not optimize at all.

 Explicitly say ALL or DISTINCT after UNION -- it reminds you pick between the faster ALL or
the slower DISTINCT.

« Don't use SELECT *, especially if you have TEXT or BLOB columns that you don't need.
There is overhead in tmp tables and transmission.

* Itis faster when the GROUP BY and ORDER BY can have exactly the same list.

« Don't use FORCE INDEX; it may help today, but will probably hurt tomorrow.

Remarks

See also discussions about ORDER BY, LIKE, REGEXP, etc. Note: this needs editing with links
and more Topics.

Cookbook on building optimal indexes.

Examples

Add the correct index

This is a huge topic, but it is also the most important "performance" issue.

The main lesson for a novice is to learn of "composite" indexes. Here's a quick example:
INDEX (last_name, first_name)

is excellent for these:

WHERE last_name = ' .
WHERE first_name = '...' AND last_name = '...' —— (order in WHERE does not matter)

but not for
WHERE first_name = '...' —— order in INDEX _does_ matter
WHERE last_name = '...' OR first_name = '...' —— "OR" is a killer

https://riptutorial.com/ 154

https://mariadb.com/kb/en/mariadb/building-the-best-index-for-a-given-select/

Set the cache correctly
innodb_buffer_pool_size should be about 70% of available RAM.

Avoid inefficient constructs
x IN (SELECT ...)

turn into a gorn
When possible, avoid or.

Do not 'hide' an indexed column in a function, such as weere pate(x) = ...;reformulate as weere x

You can generally avoid waere Lcase (namel) = LCASE (name2) DY having a suitable collation.
Do no use orrser for "pagination”, instead 'remember where you left off'.
Avoid seLect * ... (unless debugging).

Note to Maria Deleva, Barranka, Batsu: This is a place holder; please make remove these items
as you build full-scale examples. After you have done the ones you can, | will move in to elaborate
on the rest and/or toss them.

Negatives

Here are some things that are not likely to help performance. They stem from out-of-date
information and/or naivety.

* InnoDB has improved to the point where MylSAM is unlikely to be better.

* PARTITIONing rarely provides performance benefits; it can even hurt performance.

» Setting query_cache_size bigger than 100M will usually hurt performance.

* Increasing lots of values in ny.cnt may lead to 'swapping', which is a serious performance
problem.

+ "Prefix indexes" (such as 1oex (foo (20))) are generally useless.

» optiMIzE TABLE IS @lmost always useless. (And it involves locking the table.)

Have an INDEX

The most important thing for speeding up a query on any non-tiny table is to have a suitable index.

WHERE a = 12 —--> INDEX (a)

WHERE a > 12 —--> INDEX (a)

WHERE a = 12 AND b > 78 —--> INDEX(a,b) is more useful than INDEX (b, a)

WHERE a > 12 AND b > 78 —--> INDEX(a) or INDEX(b); no way to handle both ranges
ORDER BY x —-> INDEX (x)

ORDER BY x, y —-> INDEX(x,y) in that order

https://riptutorial.com/ 155

ORDER BY x DESC, y ASC —--> No index helps - because of mixing ASC and DESC

Don't hide in function

A common mistake is to hide an indexed column inside a function call. For example, this can't be
helped by an index:

WHERE DATE (dt) = '2000-01-01"

Instead, given moex (at) then these may use the index:

WHERE dt = '2000-01-01' -- if ‘dt' is datatype 'DATE

This works for pate, pateriMe, TiMESTAMP, @aNd €ven pateTIME (6) (MiCroseconds):

WHERE dt >= '2000-01-01"
AND dt < '2000-01-01"' + INTERVAL 1 DAY

OR
In general or Kills optimization.

WHERE a = 12 OR b = 78

cannot use 1pex (a,b), @and may or may not use oex (a), INDEX (b) Via "index merge". Index merge
is better than nothing, but only barely.

WHERE x = 3 OR x = 5

is turned into

WHERE x IN (3, 5)
which may use an index with x in it.

Subqueries

Subqueries come in several flavors, and they have different optimization potential. First, note that
subqueries can be either "correlated" or "uncorrelated". Correlated means that they depend on
some value from outside the subquery. This generally implies that the subquery must be re-
evaluated for each outer value.

This correlated subquery is often pretty good. Note: It must return at most 1 value. It is often useful
as an alternative to, though not necessarily faster than, a terr so1n.

SELECT a, b, (SELECT ... FROM t WHERE t.x = u.x) AS c
FROM u ...

https://riptutorial.com/ 156

SELECT a, b, (SELECT MAX(x) ...) AS c
FROM u ...

SELECT a, b, (SELECT x FROM t ORDER BY ... LIMIT 1) AS c
FROM u ...

This is usually uncorrelated:

SELECT ...
FROM (SELECT ...) AS a
JOIN b ON ...

Notes on the rroM-sELECT:

* If it returns 1 row, great.

» A good paradigm (again "1 row") is for the subquery to be (serect en := 0), thereby
initializing an “@variable for use in the rest or the query.

« If it returns many rows and the sorv also is (seLect ...) with many rows, then efficiency
can be terrible. Pre-5.6, there was no index, so it became a cross so1n; 5.6+ involves
deducing the best index on the temp tables and then generating it, only to throw it away
when finished with the serect.

JOIN + GROUP BY
A common problem that leads to an inefficient query goes something like this:

SELECT ...
FROM a
JOIN b ON ...
WHERE ...
GROUP BY a.id

First, the sorn expands the number of rows; then the crour sy whittles it back down the the number
of rows in a.

There may not be any good choices to solve this explode-implode problem. One possible option is
to turn the sorwv into a correlated subquery in the serect. This also eliminates the crour sy.

Read Performance Tuning online: https:/riptutorial.com/mysql/topic/4292/performance-tuning

https://riptutorial.com/ 157

https://riptutorial.com/mysql/topic/4292/performance-tuning

C_hapter 52: Pivot queries

Remarks

Pivot query creation in MySQL relies upon the crour_concat () function. If the result of the
expression that creates the columns of the pivot query is expected to be large, the value of the
group_concat_max_len Variable must be increased:

set session group_concat_max_len = 1024 * 1024; —-- This should be enough for most cases

Examples

Creating a pivot query

MySQL does not provide a built-in way to create pivot queries. However, these can be created
using prepared statements.

Assume the table tb1_values:

s rane o
1 10

Pete A
2 Pete B 20
3 John A 10

Request: Create a query that shows the sum of vaiue for each name; the croup must be column
header and name must be the row header.

—-— 1. Create an expression that builds the columns
set @sgl = (
select group_concat (distinct
concat (
"sum (case when “Group ='", Group, "' then "Value' end) as ", “Group , "' "
)
)
from tbl_values
)i

—-— 2. Complete the SQL instruction
set @sgl = concat ("select Name, ", @sgl, " from tbl_values group by "Name ");

-— 3. Create a prepared statement
prepare stmt from @sqgl;

—-— 4. Execute the prepared statement
execute stmt;

https://riptutorial.com/

158

Result:

John 10 NULL
Pete 10 20
Important: Deallocate the prepared statement once it's no longer needed:

deallocate prepare stmt;

Example on SQL Fiddle

Read Pivot queries online: https://riptutorial.com/mysql/topic/3074/pivot-queries

https://riptutorial.com/ 159

http://sqlfiddle.com/#!9/4a3e88/4
https://riptutorial.com/mysql/topic/3074/pivot-queries

C_hapter 53: PREPARE Statements

Syntax
+ PREPARE stmt_name FROM preparable_stmt

« EXECUTE stmt_name [USING @var_name [, @var_name] ...]
« {DEALLOCATE | DROP} PREPARE stmt_name

Examples

PREPARE, EXECUTE and DEALLOCATE PREPARE Statements

PREPARE prepares a statement for execution
EXECUTE executes a prepared statement

DEALLOCATE PREPARE releases a prepared statement

SET @s = 'SELECT SQRT (POW(?,2) + POW(?,2)) AS hypotenuse';
PREPARE stmt2 FROM @s;

SET Qa = 6;

SET @b = 8;

EXECUTE stmt2 USING (a, @b;

Result:
o ——— +
| hypotenuse |
o +
| 10 |
o +

Finally,

DEALLOCATE PREPARE stmt2;

Notes:

* You must use @variables, not DECLAREA variables for rrom es
» A primary use for Prepare, etc, is to 'construct' a query for situations where binding will not
work, such as inserting the table name.

Construct and execute
(This is a request for a good example that shows how to construct a serecT using concar, then

prepare+execute it. Please emphasize the use of @variables versus DECLAREA variables -- it
makes a big difference, and it is something that novices (include myself) stumble over.)

https://riptutorial.com/ 160

http://dev.mysql.com/doc/refman/5.7/en/prepare.html
http://dev.mysql.com/doc/refman/5.7/en/execute.html
http://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html

Alter table with add column

SET v_column_definition := CONCAT (
v_column_name
, " ',v_column_type
;' ',v_column_options
)i
SET @stmt := CONCAT ('ALTER TABLE ADD COLUMN ', v_column_definition);

PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

Read PREPARE Statements online: https:/riptutorial.com/mysql/topic/2603/prepare-statements

https://riptutorial.com/ 161

https://riptutorial.com/mysql/topic/2603/prepare-statements

C_hapter 54: Recover and reset the default
root password for MySQL 5.7+

Introduction

After MySQL 5.7, when we install MySQL sometimes we don't need to create a root account or
give a root password. By default when we start the server, the default password is stored in the
mysqld.log file. We need to login in to the system using that password and we need to change it.

Remarks

Recovering and resetting the default root password using this method is applicable only for
MySQL 5.7+

Examples

What happens when the initial start up of the server

Given that the data directory of the server is empty:

» The server is initialized.

» SSL certificate and key files are generated in the data directory.

» The validate_password plugin is installed and enabled.

» The superuser account 'root'@'localhost' is created. The password for the superuser is set
and stored in the error log file.

How to change the root password by using the default password
To reveal the default "root" password:

shell> sudo grep 'temporary password' /var/log/mysgld.log

Change the root password as soon as possible by logging in with the generated temporary
password and set a custom password for the superuser account:
shell> mysgl -uroot -p

mysgl> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass5!';

Note: MySQL's validate_password plugin is installed by default. This will require that passwords
contain at least one upper case letter, one lower case letter, one digit, and one special character,
and that the total password length is at least 8 characters.

https://riptutorial.com/ 162

reset root password when " /var/run/mysqld’ for UNIX socket file don't exists
if | forget the password then I'll get error.
$ mysgl -u root -p

Enter password:
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)

| tried to solve the issue by first knowing the status:

$ systemctl status mysgl.service

mysql.service - MySQL Community Server Loaded: loaded (/lib/systemd/system/mysql.service;
enabled; vendor preset: en Active: active (running) since Thu 2017-06-08 14:31:33 IST; 38s ago

Then | used the code mysgld_safe —--skip—-grant-tables & but | get the error:

mysqld_safe Directory '/var/run/mysqgld' for UNIX socket file don't exists.

$ systemctl stop mysgl.service
$ ps —eaf|grep mysql
$ mysgld_safe —--skip-grant-tables &

| solved:

$ mkdir -p /var/run/mysqgld
$ chown mysqgl:mysgl /var/run/mysqgld

Now | use the same code mysqld_safe --skip-grant-tables & and get
mysqld_safe Starting mysqgld daemon with databases from /var/lib/mysq|

If luse s mysql —u root I'll get:

Server version: 5.7.18-0ubuntu0.16.04.1 (Ubuntu)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Type 'help;' or \h' for help. Type "\c¢' to clear the current input statement.
mysql>

Now time to change password:

mysgl> use mysqgl

https://riptutorial.com/ 163

mysqgl> describe user;

Reading table information for completion of table and column names You can turn off this feature

to get a quicker startup with -A

Database changed

mysqgl> FLUSH PRIVILEGES;
mysgl> SET PASSWORD FOR root@'localhost' = PASSWORD ('newpwd') ;

or If you have a mysql root account that can connect from everywhere, you should also do:

UPDATE mysqgl.user SET Password=PASSWORD ('newpwd') WHERE User='root';

Alternate Method:

USE mysqgl
UPDATE user SET Password = PASSWORD ('newpwd')
WHERE Host = 'localhost' AND User = 'root';

And if you have a root account that can access from everywhere:

USE mysqgl
UPDATE user SET Password = PASSWORD ('newpwd')
WHERE Host = '%$' AND User = 'root'; enter code here

now need to quit from mysql and stop/start

FLUSH PRIVILEGES;
sudo /etc/init.d/mysqgl stop
sudo /etc/init.d/mysqgl start

now again - mysql -u root -p' and use the new password to get
mysql>

Read Recover and reset the default root password for MySQL 5.7+ online:

https://riptutorial.com/mysql/topic/9563/recover-and-reset-the-default-root-password-for-mysql-5-

7plus

https://riptutorial.com/

164

https://riptutorial.com/mysql/topic/9563/recover-and-reset-the-default-root-password-for-mysql-5-7plus
https://riptutorial.com/mysql/topic/9563/recover-and-reset-the-default-root-password-for-mysql-5-7plus

C_hapter 55: Recover from lost root password

Examples

Set root password, enable root user for socket and http access
Solves problem of: access denied for user root using password YES Stop mySQL:
sudo systemctl stop mysql
Restart mySQL, skipping grant tables:
sudo mysqld_safe —--skip-grant-tables
Login:
mysgl —-u root
In SQL shell, look if users exist:
select User, password,plugin FROM mysgl.user ;
Update the users (plugin null enables for all plugins):

update mysqgl.user set password=PASSWORD ('mypassword'), plugin = NULL WHERE User = 'root';

exit;
In Unix shell stop mySQL without grant tables, then restart with grant tables:

sudo service mysgl stop
sudo service mysqgl start

Read Recover from lost root password online: https://riptutorial.com/mysql/topic/9973/recover-
from-lost-root-password

https://riptutorial.com/ 165

https://riptutorial.com/mysql/topic/9973/recover-from-lost-root-password
https://riptutorial.com/mysql/topic/9973/recover-from-lost-root-password

C_hapter 56: Regular Expressions

Introduction

A regular expression is a powerful way of specifying a pattern for a complex search.

Examples

REGEXP / RLIKE

The recexp (Or its synonym, rutke) operator allows pattern matching based on regular expressions.

Consider the following emp1oyee table:

+ _____________
| EMPLOYEE_ID

Pattern A

Steven
Neena
Lex
Alexander
Bruce
David
Valli
Diana
Nancy
Daniel
John

- - - — — — — — — — — + — +

De Haan
Hunold
Ernst
Austin
Pataballa
Lorentz
Greenberg
Faviet
Chen

- - - - — — — — — — — + — +

Select all employees whose rirst_nave starts with N.

Query

SELECT * FROM employees WHERE FIRST_NAME REGEXP '~N'

—-— Pattern start with

Pattern $**

Select all employees whose prone_nuveer ends with 4569.

Query

SELECT * FROM employees WHERE PHONE_NUMBER REGEXP '4569$'

-— Pattern end with

—————————— +
SALARY |

https://riptutorial.com/

166

NOT REGEXP

Select all employees whose rirst_nave does not start with N.

Query

SELECT * FROM employees WHERE FIRST_NAME NOT REGEXP '~"N'
-— Pattern does not start with-———--—----—-—-

Regex Contain

Select all employees whose rast_namve contains in and whose rirst_nave contains a.

Query

SELECT * FROM employees WHERE FIRST_NAME REGEXP 'a' AND LAST_NAME REGEXP 'in'
== Mo » er §, pattern can e ARYINEEE =———————————mm——————————e—————— e

Any character between []

Select all employees whose rirst_nave starts with A or B or C.

Query

SELECT * FROM employees WHERE FIRST_NAME REGEXP '~ [ABC]'

Pattern or |

Select all employees whose rirst_nave starts with A or B or C and ends with r, e, or i.

Query

SELECT * FROM employees WHERE FIRST NAME REGEXP '~ [ABC]|[rei]$'

AA___AAA___ AN

Counting regular expression matches

Consider the following query:

SELECT FIRST_NAME, FIRST_NAME REGEXP '~N' as matching FROM employees

FIRST_NAME ReEGExP '~N' IS 1 Or 0 depending on the fact that rirst_nave matches ~u.

To visualize it better:

https://riptutorial.com/

167

SELECT
FIRST_NAME,
IF (FIRST_NAME REGEXP '~N', 'matches ~N', 'does not match "N') as matching

FROM employees
Finally, count total number of matching and non-matching rows with:

SELECT
IF (FIRST_NAME REGEXP '~N', 'matches "N', 'does not match ”N') as matching,

COUNT (*)
FROM employees
GROUP BY matching

Read Regular Expressions online: https://riptutorial.com/mysql/topic/9444/regular-expressions

https://riptutorial.com/

168

https://riptutorial.com/mysql/topic/9444/regular-expressions

C_hapter 57: Replication

Remarks

Replication is used to copy[Backup] data from one MySQL database server to one or more
MySQL database servers.

Master -- The MySQL database server, which is serving data to be copied
Slave -- The MySQL database server, copies data which is served by Master

With MySQL, replication is asynchronous by default. This means slaves do not need to be
connected permanently to receive updates from the master. For example, if your slave is switched
OFF or not connected with master and you are switching slave ON or connect with Master at a
later time, then it will automatically synchronize with the Master.

Depending on the configuration, you can replicate all databases, selected databases, or even
selected tables within a database.

Replication Formats
There are two core types of replication formats

Statement Based Replication (SBR) -- which replicates entire SQL statements. In this, the master
writes SQL statements to the binary log. Replication of the master to the slave works by executing
that SQL statements on the slave.

Row Based Replication (RBR) -- which replicates only the changed rows. In this, the master writes
events to the binary log that indicate how individual table rows are changed. Replication of the
master to the slave works by copying the events representing the changes to the table rows to the
slave.

You can also use a third variety, Mixed Based Replication (MBR). In this, both statement-based
and row-based logging is used. Log will be created depending on which is most appropriate for the
change.

Statement-based format was the default in MySQL versions older than 5.7.7. In MySQL 5.7.7 and
later, row-based format is the default.

Examples

Master - Slave Replication Setup

Consider 2 MySQL Servers for replication setup, one is a Master and the other is a Slave.

We are going to configure the Master that it should keep a log of every action performed on it. We
are going to configure the Slave server that it should look at the log on the Master and whenever

https://riptutorial.com/ 169

changes happens in log on the Master, it should do the same thing.
Master Configuration

First of all, we need to create a user on the Master. This user is going to be used by Slave to
create a connection with the Master.

CREATE USER 'user_name'@'$%' IDENTIFIED BY 'user_password';
GRANT REPLICATION SLAVE ON *.* TO 'user_name'Q@'%';
FLUSH PRIVILEGES;

Change user_name and user_password according to your Username and Password.

Now my.int (my.cnf in Linux) file should be edited. Include the following lines in [mysqld] section.

server—-id = 1
log-bin = mysgl-bin.log
binlog-do-db = your_database

The first line is used to assign an ID to this MySQL server.

The second line tells MySQL to start writing a log in the specified log file. In Linux this can be
configured like 10g-bin = /home/mysql/logs/mysql-bin.log. If you are starting replication in a MySQL
server in which replication has already been used, make sure this directory is empty of all
replication logs.

The third line is used to configure the database for which we are going to write log. You should
replace your_database With your database name.

Make sure skip-networking has not been enabled and restart the MySQL server(Master)
Slave Configuration

ny.inf file should be edited in Slave also. Include the following lines in [mysqld] section.

server—id = 2

master—-host master_ip_address

master—-connect-retry = 60
master-user = user_name
master—-password = user_password

replicate-do-db = your_database

relay-log = slave-relay.log
relay-log-index = slave-relay-log.index

The first line is used to assign an ID to this MySQL server. This ID should be unique.

The second line is the I.P address of the Master server. Change this according to your Master
system |.P.

The third line is used to set a retry limit in seconds.

https://riptutorial.com/ 170

The next two lines tell the username and password to the Slave, by using which it connect the
Master.

Next line set the database it needs to replicate.
The last two lines used to assign reilay-1og and relay-log-index file names.
Make sure skip-networking has not been enabled and restart the MySQL server(Slave)

Copy Data to Slave

If data is constantly being added to the Master, we will have to prevent all database access on the
Master so nothing can be added. This can be achieved by run the following statement in Master.

FLUSH TABLES WITH READ LOCK;
If no data is being added to the server, you can skip the above step.
We are going to take data backup of the Master by using mysq1dump

mysgldump your_database -u root -p > D://Backup/backup.sql;

Change your_database and backup directory according to your setup. You wll now have a file called
packup.sql IN the given location.

If your database not exists in your Slave, create that by executing the following
CREATE DATABASE "your_database’;
Now we have to import backup into Slave MySQL server.

mysqgl —-u root -p your_database <D://Backup/backup.sql
—-——->Change 'your_database’ and backup directory according to your setup

Start Replication

To start replication, we need to find the log file name and log position in the Master. So, run the
following in Master

SHOW MASTER STATUS;

This will give you an output like below

o o o o +
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
o o o o +
| mysgl-bin.000001 | 130 | your_database | |
o o o o +

https://riptutorial.com/ 171

Then run the following in Slave

SLAVE STOP;

CHANGE MASTER TO MASTER_HOST='master_ip_address', MASTER_USER='user_name',
MASTER_PASSWORD='user_password', MASTER_LOG_FILE='mysgl-bin.000001', MASTER_LOG_PO0OS=130;

SLAVE START;

First we stop the Slave. Then we tell it exactly where to look in the Master log file. For
MASTER_LOG_FILE Name and masTer_10G_pos, USe the values which we got by running suow master
status command on the Master.

You should change the I.P of the Master in vaster_nost, and change the user and password
accordingly.

The Slave will now be waiting. The status of the Slave can be viewed by run the following

SHOW SLAVE STATUS;

If you previously executed rrusu tasLes wita reap rock in Master, release the tables from lock by
run the following

UNLOCK TABLES;

Now the Master keep a log for every action performed on it and the Slave server look at the log on
the Master. Whenever changes happens in log on the Master, Slave replicate that.

Replication Errors

Whenever there is an error while running a query on the slave, MySQL stop replication
automatically to identify the problem and fix it. This mainly because an event caused a duplicate
key or a row was not found and it cannot be updated or deleted. You can skip such errors, even if
this is not recommended

To skip just one query that is hanging the slave, use the following syntax

SET GLOBAL sqgl_slave_skip_counter = Nj;

This statement skips the next N events from the master. This statement is valid only when the
slave threads are not running. Otherwise, it produces an error.

STOP SLAVE;
SET GLOBAL sgl_slave_skip_counter=1;
START SLAVE;

In some cases this is fine. But if the statement is part of a multi-statement transaction, it becomes
more complex, because skipping the error producing statement will cause the whole transaction to
be skipped.

If you want to skip more queries which producing same error code and if you are sure that

https://riptutorial.com/ 172

skipping those errors will not bring your slave inconsistent and you want to skip them all, you
would add a line to skip that error code in your my . cnr.

For example you might want to skip all duplicate errors you might be getting

1062 | Error 'Duplicate entry 'xyz' for key 1' on query

Then add the following to your my.cnt
slave-skip-errors = 1062

You can skip also other type of errors or all error codes, but make sure that skipping those errors
will not bring your slave inconsistent. The following are the syntax and examples
slave-skip-errors=[err_codel,err_code2, ... |all]
slave-skip-errors=1062,1053

slave-skip-errors=all
slave-skip-errors=ddl_exist_errors

Read Replication online: https://riptutorial.com/mysql/topic/7218/replication

https://riptutorial.com/ 173

https://riptutorial.com/mysql/topic/7218/replication

C_hapter 58: Reserved Words

Introduction

MySQL has some special names called reserved words. A reserved word can be used as an

identifier for a table, column, etc. only if it's wrapped in backticks ('), otherwise it will give rise to an

error.

To avoid such errors, either don't use reserved words as identifiers or wrap the offending identifier
in backticks.

Remarks

Listed below are all reserved words (from the official documentation):

ACCESSIBLE
ADD

ALL

ALTER
ANALYZE
AND

AS

ASC
ASENSITIVE
BEFORE
BETWEEN
BIGINT
BINARY
BLOB

BOTH

BY

CALL
CASCADE
CASE
CHANGE
CHAR
CHARACTER
CHECK
COLLATE
COLUMN
CONDITION
CONSTRAINT
CONTINUE
CONVERT
CREATE

https://riptutorial.com/

174

http://dev.mysql.com/doc/refman/5.7/en/keywords.html

+ CROSS

« CURRENT_DATE
« CURRENT_TIME
« CURRENT_TIMESTAMP
+ CURRENT_USER
+ CURSOR

« DATABASE

+ DATABASES

« DAY_HOUR

« DAY_MICROSECOND
+ DAY_MINUTE

« DAY_SECOND
« DEC

- DECIMAL

+ DECLARE

« DEFAULT

+ DELAYED

« DELETE

« DESC

« DESCRIBE

« DETERMINISTIC
« DISTINCT

« DISTINCTROW
+ DIV

« DOUBLE

+ DROP

+ DUAL

« EACH

- ELSE

« ELSEIF

« ENCLOSED

« ESCAPED

« EXISTS

« EXIT

« EXPLAIN

+ FALSE

« FETCH

« FLOAT

+ FLOAT4

+ FLOATS8

+ FOR

« FORCE

+ FOREIGN

« FROM

* FULLTEXT

+ GENERATED

https://riptutorial.com/ 175

+ GET

« GRANT

+ GROUP

« HAVING

« HIGH_PRIORITY
+ HOUR_MICROSECOND
« HOUR_MINUTE
+ HOUR_SECOND
. IF

+ IGNORE

* IN

« INDEX

« INFILE

* INNER

« INOUT

« INSENSITIVE

« INSERT

« INT

« INTH

+ INT2

« INT3

+ INT4

« INT8

« INTEGER

+ INTERVAL

« INTO

* IO_AFTER_GTIDS
+ |O_BEFORE_GTIDS
« IS

+ ITERATE

+ JOIN

+ KEY

« KEYS

« KILL

« LEADING

« LEAVE

« LEFT

« LIKE

« LIMIT

+ LINEAR

* LINES

« LOAD

« LOCALTIME
 LOCALTIMESTAMP
« LOCK

+ LONG

https://riptutorial.com/ 176

- LONGBLOB

« LONGTEXT

- LOOP

. LOW_PRIORITY

- MASTER_BIND

- MASTER_SSL_VERIFY_SERVER_CERT
« MATCH

- MAXVALUE

- MEDIUMBLOB

« MEDIUMINT

« MEDIUMTEXT

. MIDDLEINT

« MINUTE_MICROSECOND
« MINUTE_SECOND
- MOD

- MODIFIES

« NATURAL

- NOT

« NO_WRITE_TO BINLOG
. NULL

- NUMERIC

- ON

. OPTIMIZE

. OPTIMIZER COSTS
. OPTION

. OPTIONALLY

.- OR

- ORDER

. OUT

. OUTER

- OUTFILE

. PARTITION

- PRECISION

. PRIMARY

- PROCEDURE

- PURGE

. RANGE

« READ

. READS

- READ_WRITE

. REAL

- REFERENCES

- REGEXP

. RELEASE

- RENAME

. REPEAT

https://riptutorial.com/ 177

. REPLACE

- REQUIRE

. RESIGNAL

- RESTRICT

. RETURN

- REVOKE

. RIGHT

. RLIKE

- SCHEMA

. SCHEMAS

- SECOND_MICROSECOND
. SELECT

. SENSITIVE

. SEPARATOR

. SET

. SHOW

. SIGNAL

« SMALLINT

. SPATIAL

. SPECIFIC

. SQL

. SQLEXCEPTION
. SQLSTATE

- SQLWARNING

. SQL_BIG_RESULT
. SQL_CALC_FOUND_ROWS
. SQL_SMALL_RESULT
. SSL

. STARTING

. STORED

. STRAIGHT JOIN
. TABLE

« TERMINATED

« THEN

. TINYBLOB

« TINYINT

. TINYTEXT

- TO

. TRAILING

. TRIGGER

- TRUE

. UNDO

. UNION

. UNIQUE

- UNLOCK

. UNSIGNED

https://riptutorial.com/ 178

+ UPDATE

+ USAGE

+ USE

* USING

« UTC_DATE

« UTC_TIME

« UTC_TIMESTAMP
« VALUES

+ VARBINARY

« VARCHAR

+ VARCHARACTER
* VARYING

« VIRTUAL

+ WHEN

+ WHERE

« WHILE

+ WITH

+ WRITE

+ XOR
 YEAR_MONTH

+ ZEROFILL

+ GENERATED

« OPTIMIZER_COSTS
« STORED

+ VIRTUAL

Examples

Errors due to reserved words
When trying to select from a table called order like this

select * from order

the error rises:

Error Code: 1064. You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'order" at
line 1

Reserved keywords in MySQL need to be escaped with backticks (")

select * from ‘order’

to distinguish between a keyword and a table or column name.

See also: Syntax error due to using a reserved word as a table or column name in MySQL.

https://riptutorial.com/ 179

http://stackoverflow.com/questions/23446377/syntax-error-due-to-using-a-reserved-word-as-a-table-or-column-name-in-mysql

Read Reserved Words online: https://riptutorial.com/mysql/topic/1398/reserved-words

https://riptutorial.com/ 180

https://riptutorial.com/mysql/topic/1398/reserved-words

C_hapter 59: Security via GRANTSs

Examples

Best Practice
Limit root (and any other SUPER-privileged user) to

GRANT ... TO root@localhost ...

That prevents access from other servers. You should hand out SUPER to very few people, and
they should be aware of their responsibility. The application should not have SUPER.

Limit application logins to the one database it uses:

GRANT ... ON dbname.* ...

That way, someone who hacks into the application code can't get past dbname. This can be
further refined via either of these:

GRANT SELECT ON dname.* ... —-— "read only"
GRANT ... ON dname.tblname ... —-- "Jjust one table"

The readonly may also need 'safe' things like

GRANT SELECT, CREATE TEMPORARY TABLE ON dname.* ... —-— "read only"

As you say, there is no absolute security. My point here is there you can do a few things to slow
hackers down. (Same goes for honest people goofing.)

In rare cases, you may need the application to do something available only to root. this can be
done via a "Stored Procedure" that has securtty pEFINER (@Nd root defines it). That will expose only
what the SP does, which might, for example, be one particular action on one particular table.
Host (of user@host)

The "host" can be either a host name or an IP address. Also, it can involve wild cards.

GRANT SELECT ON db.* TO sam@'my.domain.com' IDENTIFIED BY 'foo';

Examples: Note: these usually need to be quoted

localhost —-- the same machine as mysqgld

'my.domain.com' -- a specific domain; this involves a lookup

'11.22.33.44"' —— a specific IP address

'192.168.1.%"' —— wild card for trailing part of IP address. (192.168.% and 10.% and 11.% are

https://riptutorial.com/ 181

"internal" ip addresses.)

Using 10calhost relies on the security of the server. For best practice root should only be allowed
in through localhost. In some cases, these mean the same thing: 0.0.0.1 and ::1.

Read Security via GRANTSs online: https://riptutorial.com/mysql/topic/5131/security-via-grants

https://riptutorial.com/ 182

https://riptutorial.com/mysql/topic/5131/security-via-grants

Chapter 60: SELECT

Introduction

seLECT IS used to retrieve rows selected from one or more tables.

Syntax

« SELECT DISTINCT [expressions] FROM TableName [WHERE conditions]; ///Simple Select

« SELECT DISTINCT(a), b ... is the same as SELECT DISTINCT a, b ...

« SELECT [ALL | DISTINCT | DISTINCTROW][HIGH_PRIORITY][STRAIGHT_JOIN]|
SQL_SMALL_RESULT | SQL_BIG_RESULT][SQL_BUFFER_RESULT][SQL_CACHE |
SQL_NO_CACHE][SQL_CALC_FOUND_ROWS] expressions FROM tables [WHERE
conditions] [GROUP BY expressions] [HAVING condition] [ORDER BY expression [ASC |
DESC]] [LIMIT [offset_value] number_rows | LIMIT number_rows OFFSET offset_value]
[PROCEDURE procedure_name] [INTO [OUTFILE 'file_name' options | DUMPFILE
file_name' | @variable1, @variable2, ... @variable_n] [FOR UPDATE | LOCK IN SHARE

MODE]; ///Full Select Syntax

Remarks

For more information on MySQL's serecT statement, refer MySQL Docs.

Examples
SELECT by column name

CREATE TABLE stack (
id INT,
username VARCHAR (30)
password VARCHAR (30)

NOT NULL,
NOT NULL
)i

INSERT INTO stack (" id’,
INSERT INTO stack (" id’,

‘username’, ~password’)

‘username’, ~password’)

Query
SELECT id FROM stack;

Result

VALUES (1,
VALUES (2,

'hiddenGem') ;
'verySecret');

'Foo',
'Baa’',

https://riptutorial.com/

183

https://dev.mysql.com/doc/refman/5.7/en/select.html

SELECT all columns (*)
Query

SELECT * FROM stack;

Result

o o o +
| id | username | password |
o o o +
| 1 | admin | admin |
| 2 | stack | stack |
o o o +
2 rows in set (0.00 sec)

You can select all columns from one table in a join by doing:

SELECT stack.* FROM stack JOIN Overflow ON stack.id = Overflow.id;

Best Practice Do not use + unless you are debugging or fetching the row(s) into associative
arrays, otherwise schema changes (ADD/DROP/rearrange columns) can lead to nasty application
errors. Also, if you give the list of columns you need in your result set, MySQL's query planner
often can optimize the query.

Pros:

1. When you add/remove columns, you don't have to make changes where you did use serect

*

2. It's shorter to write
3. You also see the answers, so can serecT *-usage ever be justified?

Cons:

1. You are returning more data than you need. Say you add a VARBINARY column that
contains 200k per row. You only need this data in one place for a single record - using sevect
= you can end up returning 2MB per 10 rows that you don't need

2. Explicit about what data is used

. Specifying columns means you get an error when a column is removed

4. The query processor has to do some more work - figuring out what columns exist on the
table (thanks @vinodadhikary)

5. You can find where a column is used more easily

. You get all columns in joins if you use SELECT *

7. You can't safely use ordinal referencing (though using ordinal references for columns is bad
practice in itself)

w

»

https://riptutorial.com/ 184

8. In complex queries with text fields, the query may be slowed down by less-optimal temp
table processing

SELECT with WHERE
Query

SELECT * FROM stack WHERE username = "admin" AND password = "admin";

Result

1 row in set (0.00 sec)

Query with a nested SELECT in the WHERE
clause

The wuere clause can contain any valid serect statement to write more complex queries. This is a
'nested' query

Query

Nested queries are usually used to return single atomic values from queries for comparisons.

SELECT title FROM books WHERE author_id = (SELECT id FROM authors WHERE last_name = 'Bar' AND
first_name = 'Foo');

Selects all usernames with no email address

SELECT * FROM stack WHERE username IN (SELECT username FROM signups WHERE email IS NULL);

Disclaimer: Consider using joins for performance improvements when comparing a whole result
set.

SELECT with LIKE (%)

CREATE TABLE stack

(id int AUTO_INCREMENT PRIMARY KEY,
username VARCHAR (100) NOT NULL

)i

INSERT stack (username) VALUES
('admin'), ('k admin'), ('adm'), ('a adm b'), ('b XadmY c'), ('adm now'), ('not here');

https://riptutorial.com/ 185

http://stackoverflow.com/questions/17946221/sql-join-and-different-types-of-joins

"adm" anywhere:

SELECT * FROM stack WHERE username LIKE "%adm%";

b XadmY c
adm now

Begins with "adm":

SELECT * FROM stack WHERE username LIKE "adm%";

Ends with "adm":

SELECT * FROM stack WHERE username LIKE "%adm";

o ——— +
| 1d | username |
o ——— +
| 3 | adm |
o ——— +

Just as the « character in a L1xe clause matches any number of characters, the _ character
matches just one character. For example,

SELECT * FROM stack WHERE username LIKE "adm_n";

e +
| 1d | username |
e +
| 1 | admin |
e +

Performance Notes If there is an index on username, then

* LIKE 'adm' performs the same as "= 'adm'’

* LIKE 'adms IS @ "range", similar to setween. .anp. . It can make good use of an index on the
column.

* LIKE 'sadm' (Or any variant with a leading wildcard) cannot use any index. Therefore it will be
slow. On tables with many rows, it is likely to be so slow it is useless.

» ru1ke (rREGEXP) tends to be slower than nixze, but has more capabilities.

« While MySQL offers ruriext indexing on many types of table and column, those rurLrrexT

https://riptutorial.com/ 186

indexes are not used to fulfill queries using vike.
SELECT with Alias (AS)

SQL aliases are used to temporarily rename a table or a column. They are generally used to
improve readability.

Query

SELECT username AS val FROM stack;
SELECT username val FROM stack;

(Note: as is syntactically optional.)

Result

| admin |

2 rows in set (0.00 sec)

SELECT with a LIMIT clause
Query:

SELECT *
FROM Customers
ORDER BY CustomerID

LIMIT 3;
Result:

Alfreds Obere Str.
Futterkiste Maria Anders 57 Berlin 12209 Germany
Ana Trujillo Avda. de la México

2 Emparedadosy Ana Trujillo Constitucion D.F 05021 Mexico
helados 2222 o
Antonio Moreno Antonio Mataderos México :

3 Taqueria Moreno 2312 D.F. 05023 Mexico

Best Practice Always use oroer sy When using wivit; otherwise the rows you will get will be
unpredictable.

https://riptutorial.com/ 187

Query:

SELECT *

FROM Customers
ORDER BY CustomerID
LIMIT 2,1;

Explanation:

When a w1vrt clause contains two numbers, it is interpreted as nimit offset, count. SO, in this
example the query skips two records and returns one.

Result:
Antonio Moreno Antonio Mataderos Meéxico .
3 Taqueria Moreno 2312 D 09023 Mexico

Note:

The values in L1vrT clauses must be constants; they may not be column values.
SELECT with DISTINCT
The prstinct clause after serect eliminates duplicate rows from the result set.

CREATE TABLE "car’

(“car_id® INT UNSIGNED NOT NULL PRIMARY KEY,
“name’ VARCHAR (20),
‘price’ DECIMAL(8,2)

)i

INSERT INTO CAR (car_id', “name , ‘price’) VALUES (1, 'Audi Al', '20000');
INSERT INTO CAR (car_id', “name , "price’) VALUES (2, 'Audi Al', '15000');
INSERT INTO CAR (car_id', “name’, ‘price’) VALUES (3, 'Audi A2', '40000');
INSERT INTO CAR (car_id', “name’ , "price’) VALUES (4, 'Audi A2', '40000');

SELECT DISTINCT "name , price’ FROM CAR;

20000.00 |
15000.00 |
40000.00 |
—————————— +

prsTinct WOrks across all columns to deliver the results, not individual columns. The latter is often
a misconception of new SQL developers. In short, it is the distinctness at the row-level of the result
set that matters, not distinctness at the column-level. To visualize this, look at "Audi A1" in the
above result set.

https://riptutorial.com/ 188

For later versions of MySQL, prstinct has implications with its use alongside oroer sy. The setting

for onry_rurrn_crour_ey comes into play as seen in the following MySQL Manual Page entitled

MySQL Handling of GROUP BY.

SELECT with LIKE()

A _ character in a r1xe clause pattern matches a single character.

Query

SELECT username FROM users WHERE users LIKE 'admin_';

Result
o +
| username |
o +
| adminl |
| admin2 |
| admin-— |
| adminA |
o +

SELECT with CASE or IF

Query

SELECT st.name,
st .percentage,

CASE WHEN st.percentage >= 35 THEN

FROM student AS st ;

Result
o +
| name | percentage | Remark |
o +
Isha	67	Pass
Rucha	28	Fail
Het	35	Pass
Ansh	92	Pass
o +

Or with IF
SELECT st.name,

st .percentage,
IF (st.percentage >= 35, 'Pass',

FROM student AS st ;

N.B

'Fail')

AS

'Pass' ELSE 'Fail' END AS

‘Remark’

"Remark’

https://riptutorial.com/

189

http://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

IF (st.percentage >= 35, 'Pass', 'Fail')
This means : IF st.percentage >= 35 is TRUE then return 'rpass' ELSE return 'Faii-
SELECT with BETWEEN

You can use BETWEEN clause to replace a combination of "greater than equal AND less than
equal" conditions.

Data

mysqgl

Query with operators

SELECT * FROM stack WHERE id >= 2 and id <= 5;

Similar query with BETWEEN

SELECT * FROM stack WHERE id BETWEEN 2 and 5;

Result

o +
| username |
ot +
|
|
|
|
+

mysqgl
thanks
——————————— +

4 rows in set (0.00 sec)

BETWEEN uses >= and <=, not > and <.
Using NOT BETWEEN

If you want to use the negative you can use vor. For example :

SELECT * FROM stack WHERE id NOT BETWEEN 2 and 5;

https://riptutorial.com/ 190

Result

2 rows in set (0.00 sec)

NOT BETWEEN uses > and < and not >= and <= That iS, wHERE id NOT BETWEEN 2 and 5
is the same as weHERE (id < 2 OR id > 5).

If you have an index on a column you use in a setween search, MySQL can use that index for a
range scan.

SELECT with date range

SELECT ... WHERE dt >= '2017-02-01"'
AND dt < '2017-02-01' + INTERVAL 1 MONTH

Sure, this could be done with setwzen and inclusion of 23:59:59. But, the pattern has this benefits:

* You don't have pre-calculate the end date (which is often an exact length from the start)
* You don't include both endpoints (as setween does), nor type '23:59:59' to avoid it.

|t works for patEe, TIMESTAMP, DATETIME, @Nd even the microsecond-included paTeTIME (6).

* It takes care of leap days, end of year, etc.

It is index-friendly (so is BeTwEEN).

Read SELECT online: https://riptutorial.com/mysql/topic/3307/select

https://riptutorial.com/

191

https://riptutorial.com/mysql/topic/3307/select

C_hapter 61: Server Information

Parameters

Explanation

GLOBAL Shows the variables as they are configured for the entire server. Optional.

SESSION Shows the variables that are configured for this session only. Optional.

Examples

SHOW VARIABLES example

To get all the server variables run this query either in the SQL window of your preferred interface
(PHPMyAdmin or other) or in the MySQL CLI interface

SHOW VARIABLES;

You can specify if you want the session variables or the global variables as follows:

Session variables:
SHOW SESSION VARIABLES;
Global variables:
SHOW GLOBAL VARIABLES;
Like any other SQL command you can add parameters to your query such as the LIKE command:
SHOW [GLOBAL | SESSION] VARIABLES LIKE 'max_join_size';
Or, using wildcards:
SHOW [GLOBAL | SESSION] VARIABLES LIKE '%$size%';

You can also filter the results of the SHOW query using a WHERE parameter as follows:

SHOW [GLOBAL | SESSION] VARIABLES WHERE VALUE > 0;

SHOW STATUS example

To get the database server status run this query in either the SQL window of your preferred

https://riptutorial.com/ 192

interface (PHPMyAdmin or other) or on the MySQL CLI interface.

SHOW STATUS;

You can specify whether you wish to receive the SESSION or GLOBAL status of your sever like
so: Session status:

SHOW SESSION STATUS;

Global status:
SHOW GLOBAL STATUS;

Like any other SQL command you can add parameters to your query such as the LIKE command:
SHOW [GLOBAL | SESSION] STATUS LIKE 'Key%';

Or the Where command:

SHOW [GLOBAL | SESSION] STATUS WHERE VALUE > 0;

The main difference between GLOBAL and SESSION is that with the GLOBAL modifier the
command displays aggregated information about the server and all of it's connections, while the
SESSION modifier will only show the values for the current connection.

Read Server Information online: https:/riptutorial.com/mysql/topic/9924/server-information

https://riptutorial.com/ 193

https://riptutorial.com/mysql/topic/9924/server-information

C_hapter 62: SSL Connection Setup

Examples

Setup for Debian-based systems

(This assumes MySQL has been installed and that sudo is being used.)

Generating a CA and SSL keys

Make sure OpenSSL and libraries are installed:

apt—-get -y install openssl
apt—-get -y install libssl-dev

Next make and enter a directory for the SSL files:

mkdir /home/ubuntu/mysglcerts
cd /home/ubuntu/mysqlcerts

To generate keys, create a certificate authority (CA) to sign the keys (self-signed):

openssl genrsa 2048 > ca-key.pem
openssl reqg —new —-x509 —nodes -days 3600 -key ca-key.pem -out ca.pem

The values entered at each prompt won't affect the configuration. Next create a key for the server,
and sign using the CA from before:

openssl req —-newkey rsa:2048 -days 3600 -nodes -keyout server-key.pem -out server-req.pem
openssl rsa —in server-key.pem -out server-key.pem

openssl x509 -req —-in server-req.pem -days 3600 -CA ca.pem —-CAkey ca-key.pem -set_serial 01 -

out server-—-cert.pem

Then create a key for a client:

openssl req -newkey rsa:2048 -days 3600 —-nodes —-keyout client-key.pem -out client-req.pem
openssl rsa —-in client-key.pem -out client-key.pem

openssl x509 -req -in client-reqg.pem -days 3600 —-CA ca.pem —-CAkey ca-key.pem -set_serial 01 -
out client-cert.pem

To make sure everything was set up correctly, verify the keys:

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

https://riptutorial.com/ 194

Adding the keys to MySQL

Open the MySQL configuration file. For example:

vim /etc/mysqgl/mysql.conf.d/mysqgld.cnf

Under the nysq141 section, add the following options:

ssl-ca = /home/ubuntu/mysglcerts/ca.pem
ssl-cert = /home/ubuntu/mysqglcerts/server—cert.pem
ssl-key = /home/ubuntu/mysglcerts/server-key.pem

Restart MySQL. For example:

service mysqgl restart

Test the SSL connection

Connect in the same way, passing in the extra options ssi-ca, ssi-cert, and ssi-key, using the
generated client key. For example, assuming cd /home/ubuntu/mysqlcerts:

mysql —--ssl-ca=ca.pem —--ssl-cert=client-cert.pem --ssl-key=client-key.pem -h 127.0.0.1 -u
superman -p

After logging in, verify the connection is indeed secure:

superman@l27.0.0.1 [None]> SHOW VARIABLES LIKE '$%ssl%';

fom e +
| Variable_name | Value |
fom e +
have_openssl	YES
have_ssl	YES
ssl_ca	/home/ubuntu/mysglcerts/ca.pem
ssl_capath	
ssl_cert	/home/ubuntu/mysglcerts/server—-cert.pem
ssl_cipher	
ssl_crl	
ssl_crlpath	
ssl_key	/home/ubuntu/mysglcerts/server-key.pem
fom e +
You could also check:
superman@127.0.0.1 [None]> STATUS;
SSL: Cipher in use is DHE-RSA-AES256-SHA

https://riptutorial.com/ 195

http://www.riptutorial.com/mysql/example/25294/minimal-innodb-configuration

Enforcing SSL

This is via cranT, USINQ REQUIRE SSL:

GRANT ALL PRIVILEGES ON *.* TO 'superman'@'127.0.0.1' IDENTIFIED BY 'pass' REQUIRE SSL;
FLUSH PRIVILEGES;

Now, superman must connect via SSL.

If you don't want to manage client keys, use the client key from earlier and automatically use that
for all clients. Open MySQL configuration file, for example:

vim /etc/mysqgl/mysql.conf.d/mysgld.cnf

Under the (c1ient] Section, add the following options:

ssl-ca = /home/ubuntu/mysglcerts/ca.pem
ssl-cert = /home/ubuntu/mysglcerts/client-cert.pem
ssl-key = /home/ubuntu/mysglcerts/client-key.pem

Now superman ONly has to type the following to login via SSL:

mysgl -h 127.0.0.1 —-u superman -p

Connecting from another program, for example in Python, typically only requires an additional
parameter to the connect function. A Python example:

import MySQLdb

ssl = {'cert': '/home/ubuntu/mysqglcerts/client-cert.pem', 'key':

' /home /ubuntu/mysqglcerts/client—key.pem'}

conn = MySQLdb.connect (host="'127.0.0.1"', user='superman', passwd='imsoawesome', ssl=ssl)

References and further reading:

https://www.percona.com/blog/2013/06/22/setting-up-mysql-ssl-and-secure-connections/
https://lowendbox.com/blog/getting-started-with-mysql-over-ssl/
http://xmodulo.com/enable-ssl-mysql-server-client.html
https://ubuntuforums.org/showthread.php?t=1121458

Setup for CentOS7 / RHEL7

This example assumes two servers:

1. dbserver (where our database lives)
2. appclient (where our applications live)

FWIW, both servers are SELinux enforcing.

https://riptutorial.com/ 196

http://www.riptutorial.com/mysql/example/25294/minimal-innodb-configuration
https://www.percona.com/blog/2013/06/22/setting-up-mysql-ssl-and-secure-connections/
https://lowendbox.com/blog/getting-started-with-mysql-over-ssl/
http://xmodulo.com/enable-ssl-mysql-server-client.html
https://ubuntuforums.org/showthread.php?t=1121458

Frst, log on to dbserver

Create a temporary directory for creating the certificates.

mkdir /root/certs/mysqgl/ && cd /root/certs/mysql/

Create the server certificates

openssl genrsa 2048 > ca-key.pem

openssl reqg -shal -new -x509 -nodes -days 3650 -key ca-key.pem > ca-cert.pem

openssl req —-shal —-newkey rsa:2048 -days 730 —-nodes —-keyout server-key.pem > server-red.pem
openssl rsa —in server-key.pem -out server-key.pem

openssl x509 -shal -req —-in server-req.pem -days 730 -CA ca-cert.pem —-CAkey ca-key.pem -
set_serial 01 > server-cert.pem

Move server certificates to /etc/pki/tls/certs/mysql/

Directory path assumes CentOS or RHEL (adjust as needed for other distros):

mkdir /etc/pki/tls/certs/mysqgl/

Be sure to set permissions on the folder and files. mysqgl needs full ownership and access.

chown -R mysgl:mysqgl /etc/pki/tls/certs/mysqgl

Now configure MySQL/MariaDB

vi /etc/my.cnf

i

[mysqgld]

bind-address=*
ssl-ca=/etc/pki/tls/certs/ca-cert.pem
ssl-cert=/etc/pki/tls/certs/server—-cert.pem
ssl-key=/etc/pki/tls/certs/server-key.pem

:wq

Then

systemctl restart mariadb

Don't forget to open your firewall to allow connections from appclient (using IP 1.2.3.4)

firewall-cmd --zone=drop --permanent —--add-rich-rule 'rule family="ipv4" source
address="1.2.3.4" service name="mysqgl" accept'
I force everything to the drop zone. Season the above command to taste.

Now restart firewalld

service firewalld restart

https://riptutorial.com/ 197

Next, log in to dbserver's mysql server:
mysgl —-uroot -p
Issue the following to create a user for the client. note REQUIRE SSL in GRANT statement.

GRANT ALL PRIVILEGES ON *.* TO ‘iamsecure’@’appclient’ IDENTIFIED BY ‘dingdingding’ REQUIRE
SSL;

FLUSH PRIVILEGES;

quit mysql

You should still be in /root/certs/mysql from the first step. If not, cd back to it for one of the
commands below.

Create the client certificates

openssl req -shal —-newkey rsa:2048 -days 730 -nodes -keyout client-key.pem > client-req.pem
openssl rsa —-in client-key.pem -out client-key.pem

openssl x509 -shal -req -in client-reqg.pem -days 730 -CA ca-cert.pem -CAkey ca-key.pem -
set_serial 01 > client-cert.pem

Note: | used the same common name for both server and client certificates. YMMV.
Be sure you're still /root/certs/mysql/ for this next command

Combine server and client CA certificate into a single file:

cat server-cert.pem client-cert.pem > ca.pem

Make sure you see two certificates:

cat ca.pem

END OF SERVER SIDE WORK FOR NOW.

Open another terminal and
ssh appclient

As before, create a permanent home for the client certificates
mkdir /etc/pki/tls/certs/mysqgl/

Now, place the client certificates (created on dbserver) on appclient. You can either scp them
over, or just copy and paste the files one by one.

scp dbserver

https://riptutorial.com/

198

copy files from dbserver to appclient
exit scp

Again, be sure to set permissions on the folder and files. mysql needs full ownership and access.

chown -R mysgl:mysqgl /etc/pki/tls/certs/mysqgl

You should have three files, each owned by user mysql:

/etc/pki/tls/certs/mysgl/ca.pem
/etc/pki/tls/certs/mysgl/client-cert.pem
/etc/pki/tls/certs/mysgl/client-key.pem

Now edit appclient's MariaDB/MySQL config in the [c1ient] section.

vi /etc/my.cnf

1

[client]

ssl-ca=/etc/pki/tls/certs/mysqgl/ca.pem
ssl-cert=/etc/pki/tls/certs/mysqgl/client-cert.pem
ssl-key=/etc/pki/tls/certs/mysql/client—-key.pem

1wg

Restart appclient's mariadb service:

systemctl restart mariadb

al on the client here

This should return: ssl TRUE
mysql --ssl —-help

Now, log in to appclient's mysqgl instance
mysgl -uroot -p

Should see YES to both variables below

show variables LIKE '$%ssl';
have_openssl YES
have_ssl YES

Initially | saw

have_openssl NO

A quick look into mariadb.log revealed:

https://riptutorial.com/ 199

SSL error: Unable to get certificate from '/etc/pki/tls/certs/mysql/client-cert.pem’

The problem was that root owned client-cert.pem and the containing folder. The solution was to
set ownership of /etc/pki/tls/certs/mysql/ to mysq|.

chown -R mysqgl:mysqgl /etc/pki/tls/certs/mysqgl

Restart mariadb if needed from the step immediately above

NOW WE ARE READY TO TEST THE SECURE
CONNECTION

We're still on appclient here

Attempt to connect to dbserver's mysql instance using the account created above.

mysgl -h dbserver -u iamsecure -p
enter password dingdingding (hopefully you changed that to something else)

With a little luck you should be logged in without error.

To confirm you are connected with SSL enabled, issue the following command from the
MariaDB/MySQL prompt:

\s

That's a backslash s, aka status

That will show the status of your connection, which should look something like this:

Connection id: 4
Current database:

Current user: iamsecure@appclient

SSL: Cipher in use is DHE-RSA-AES256-GCM-SHA384
Current pager: stdout

Using outfile: '

Using delimiter: g

Server: MariaDB

Server version: 5.X.X-MariaDB MariaDB Server
Protocol version: 10

Connection: dbserver via TCP/IP

Server characterset: latinl

Db characterset: latinl

Client characterset: utf8

Conn. characterset: utf8

TCP port: 3306

Uptime: 42 min 13 sec

https://riptutorial.com/ 200

If you get permission denied errors on your connection attempt, check your GRANT statement
above to make sure there aren't any stray characters or ' marks.

If you have SSL errors, go back through this guide to make sure the steps are orderly.

This worked on RHEL7 and will likely work on CentOS7, too. Cannot confirm whether these exact
steps will work elsewhere.

Hope this saves someone else a little time and aggravation.

Read SSL Connection Setup online: https:/riptutorial.com/mysql/topic/7563/ssl-connection-setup

https://riptutorial.com/ 201

https://riptutorial.com/mysql/topic/7563/ssl-connection-setup

C_hapter 63: Stored routines (procedures and
functions)

Parameters

RETURNS Specifies the data type that can be returned from a function.

Actual variable or value following the return syntax is what is returned to where

RETURN the function was called from.

Remarks

A stored routine is either a procedure or a function.

A procedure is invoked using a CALL statement and can only pass back values using
output variables.

A function can be called from inside a statement just like any other function and can
return a scalar value.

Examples

Create a Function
The following (trivial) example function simply returns the constant nt value 12.

DELIMITER ||
CREATE FUNCTION functionname ()
RETURNS INT
BEGIN
RETURN 12;
END;

Il
DELIMITER ;

The first line defines what the delimiter character(permrTer 1) is to be changed to, this is needed
to be set before a function is created otherwise if left it at its default ; then the first ; that is found
in the function body will be taken as the end of the create statement, which is usually not what is
desired.

After the create runcTTON has run you should set the delimiter back to its default of ; as is seen
after the function code in the above example (pertmrTER ;).

https://riptutorial.com/ 202

Execution this function is as follows:

SELECT functionname () ;

o +
| functionname () |
o +
| 12 |
o +

A slightly more complex (but still trivial) example takes a parameter and adds a constant to it:

DELIMITER $$

CREATE FUNCTION add_2 (my_arg INT)
RETURNS INT

BEGIN
RETURN (my_arg + 2);

END;

$S

DELIMITER ;

SELECT add_2(12);

e +
| add_2(12) |
e +
| 14 |
e +

Note the use of a different argument to the pzrivrTeR directive. You can actually use any character
sequence that does not appear in the creaTe statement body, but the usual practice is to use a
doubled non-alphanumeric character such as \\, || or ss.

It is good practice to always change the parameter before and after a function, procedure or
trigger creation or update as some GUI's don't require the delimiter to change whereas running
queries via the command line always require the delimiter to be set.

Create Procedure with a Constructed Prepare

DROP PROCEDURE if exists displayNextl00WithName;
DELIMITER $$
CREATE PROCEDURE displayNextlO00WithName
(nStart int,
tblName varchar (100)
)
BEGIN
DECLARE thesgl varchar (500); —-- holds the constructed sgl string to execute

—— expands the sizing of the output buffer to accomodate the output (Max value is at least
4GB)

SET session group_concat_max_len = 4096; -- prevents group_concat from barfing with error
1160 or whatever it is

SET Qthesgl=CONCAT ("select group_concat (gqid order by gid SEPARATOR '$%3B') as nums ","from
(select gid from ");

SET @thesgl=CONCAT (@thesqgl, tblName, " where gid>? order by gid limit 100)xDerived");

PREPARE stmtl FROM @thesqgl; —- create a statement object from the construct sgl string to

https://riptutorial.com/ 203

execute

SET @pl = nStart; —-- transfers parameter passed into a User Variable compatible with the
below EXECUTE

EXECUTE stmtl USING @pl;

DEALLOCATE PREPARE stmtl; —-- deallocate the statement object when finished
ENDSS
DELIMITER ;

Creation of the stored procedure shows wrapping with a DELIMITER necessary in many client
tools.

Calling example:

call displayNextl00WithName (1, "questions_mysgl");

Sample output with 38 (semi-colon) separator:

nums
607264%:3820173649%:3830532900%:3832030 115 ‘!I"mﬂﬂﬂ214535-%3532156534%3&3235!]65“&3532?9361:3E"uﬂ 333210...

Stored procedure with IN, OUT, INOUT parameters

DELIMITER $5S

DROP PROCEDURE IF EXISTS sp_nested_loop$$
CREATE PROCEDURE sp_nested_loop (IN i INT, IN j INT, OUT x INT, OUT y INT, INOUT z INT)
BEGIN
DECLARE a INTEGER DEFAULT O0;
DECLARE b INTEGER DEFAULT O0;
DECLARE c INTEGER DEFAULT O0;
WHILE a < i DO
WHILE b < j DO
SET c @ g
SET b b + 1;
END WHILE;
SET a = a + 1;
SET b = 0;
END WHILE;
SET x = a, y = C;
SET z = x +y + z;
END $$
DELIMITER ;

Invokes (CALL) the stored procedure:

SET @z = 30;
call sp_nested_loop (10, 20, @x, Qy, @z);
SELECT @x, @y, @Qz;

Result:

https://riptutorial.com/

204

http://i.stack.imgur.com/0ZADP.jpg
http://dev.mysql.com/doc/refman/5.7/en/call.html

An 1v parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns.

An out parameter passes a value from the procedure back to the caller. Its initial value is NULL
within the procedure, and its value is visible to the caller when the procedure returns.

An 1vout parameter is initialized by the caller, can be modified by the procedure, and any change
made by the procedure is visible to the caller when the procedure returns.

Ref: http://dev.mysqgl.com/doc/refman/5.7/en/create-procedure.html

Cursors

Cursors enable you to itterate results of query one by line. pecrare command is used to init cursor
and associate it with a specific SQL query:

DECLARE student CURSOR FOR SELECT name FROM studend;

Let's say we sell products of some types. We want to count how many products of each type are
exists.

Our data:

CREATE TABLE product

(
id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
type VARCHAR (50) NOT NULL,
name VARCHAR (255) NOT NULL

)i

CREATE TABLE product_type

(
name VARCHAR (50) NOT NULL PRIMARY KEY

)i

CREATE TABLE product_type_count

(
type VARCHAR (50) NOT NULL PRIMARY KEY,
count INT (10) UNSIGNED NOT NULL DEFAULT O

)i

INSERT INTO product_type (name) VALUES
('dress'),
('food'");

INSERT INTO product (type, name) VALUES
('dress', 'T-shirt'),

'dress', 'Trousers'),

(

("food', 'Apple'),
('food', 'Tomatoes'),
('food', 'Meat');

https://riptutorial.com/ 205

http://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

We may achieve the goal using stored procedure with using cursor:

DELIMITER //
DROP PROCEDURE IF EXISTS product_count;
CREATE PROCEDURE product_count ()
BEGIN
DECLARE p_type VARCHAR (255) ;
DECLARE p_count INT (10) UNSIGNED;
DECLARE done INT DEFAULT O0;
DECLARE product CURSOR FOR
SELECT
type,
COUNT (*)
FROM product
GROUP BY type;
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;

TRUNCATE product_type;
OPEN product;
REPEAT

FETCH product

INTO p_type, p_count;
IF NOT done

THEN
INSERT INTO product_type_count
SET
type = p_type,
count = p_count;
END IF;

UNTIL done
END REPEAT;

CLOSE product;
END //
DELIMITER ;

When you may call procedure with:

CALL product_count () ;

Result would be in product_type_count table:

type | count
dress | 2
food | 3

While that is a good example of a cursor, notice how the entire body of the procedure can be
replaced by just

INSERT INTO product_type_count
(type, count)
SELECT type, COUNT (*)
FROM product

https://riptutorial.com/ 206

GROUP BY type;
This will run a lot faster.
Multiple ResultSets

Unlike a serect statement, a stored procedure returns multiple result sets. The requires different
code to be used for gathering the results of a carw in Perl, PHP, etc.

(Need specific code here or elsewhere!)

Create a function

DELIMITER $$

CREATE
DEFINER="db_username’ @ hostname_or_IP"
FUNCTION ° function_name’ (optional_param data_type (length_if_applicable))
RETURNS data_type

BEGIN
/*
SQL Statements goes here
*/

END$$

DELIMITER ;

The RETURNS data_type is any MySQL datatype.

Read Stored routines (procedures and functions) online:
https://riptutorial.com/mysql/topic/1351/stored-routines--procedures-and-functions-

https://riptutorial.com/ 207

https://riptutorial.com/mysql/topic/1351/stored-routines--procedures-and-functions-

Parameters

N =

ASCII()

BIN()
BIT_LENGTH()
CHAR()

CHAR_LENGTH()

CHARACTER_LENGTH()

CONCAT()
CONCAT_WS()

ELT()

EXPORT_SET()

FIELD()

FIND_IN_SET()

FORMAT()

FROM_BASE64()

HEX()

INSERT()

INSTR()
LCASE()

LEFT()

Return numeric value of left-most character

Return a string containing binary representation of a number
Return length of argument in bits

Return the character for each integer passed

Return number of characters in argument

Synonym for CHAR_LENGTH()

Return concatenated string

Return concatenate with separator

Return string at index number

Return a string such that for every bit set in the value bits, you
get an on string and for every unset bit, you get an off string

Return the index (position) of the first argument in the
subsequent arguments

Return the index position of the first argument within the second
argument

Return a number formatted to specified number of decimal
places

Decode to a base-64 string and return result
Return a hexadecimal representation of a decimal or string value

Insert a substring at the specified position up to the specified
number of characters

Return the index of the first occurrence of substring
Synonym for LOWER()

Return the leftmost number of characters as specified

https://riptutorial.com/

208

N ==

LENGTH()
LIKE
LOAD_FILE()
LOCATE()
LOWER()
LPAD()

LTRIM()

MAKE_SET()

MATCH
MID()

NOT LIKE
NOT REGEXP
OCT()
OCTET_LENGTH()
ORD()
POSITION()
QUOTE()
REGEXP
REPEAT()
REPLACE()
REVERSE()
RIGHT()
RLIKE
RPAD()

RTRIM()

Return the length of a string in bytes

Simple pattern matching

Load the named file

Return the position of the first occurrence of substring

Return the argument in lowercase

Return the string argument, left-padded with the specified string
Remove leading spaces

Return a set of comma-separated strings that have the
corresponding bit in bits set

Perform full-text search

Return a substring starting from the specified position
Negation of simple pattern matching

Negation of REGEXP

Return a string containing octal representation of a number
Synonym for LENGTH()

Return character code for leftmost character of the argument
Synonym for LOCATE()

Escape the argument for use in an SQL statement

Pattern matching using regular expressions

Repeat a string the specified number of times

Replace occurrences of a specified string

Reverse the characters in a string

Return the specified rightmost number of characters
Synonym for REGEXP

Append string the specified number of times

Remove trailing spaces

https://riptutorial.com/

209

N ==

SOUNDEX()
SOUNDS LIKE
SPACE()
STRCMP()
SUBSTR()

SUBSTRING()
SUBSTRING_INDEX()

TO_BASE64()
TRIM()
UCASE()
UNHEX()
UPPER()

WEIGHT_STRING()

Examples

Return a soundex string

Compare sounds

Return a string of the specified number of spaces
Compare two strings

Return the substring as specified

Return the substring as specified

Return a substring from a string before the specified number of
occurrences of the delimiter

Return the argument converted to a base-64 string
Remove leading and trailing spaces

Synonym for UPPER()

Return a string containing hex representation of a number
Convert to uppercase

Return the weight string for a string

Find element in comma separated list

SELECT FIND_IN_SET ('b'

Return value:

2

SELECT FIND_IN_SET ('d'

Return value:

0

y'a,b,ct');

y'a,b,c');

STR_TO_DATE - Convert string to date

With a column of one of the string types, named ny_date_rie1a With a value such as [the string]
07/25/2016, the following statement demonstrates the use of the str_to_pate function:

https://riptutorial.com/

210

SELECT STR_TO_DATE (my_date_field, '$m/$d/%Y') FROM my_table;
You could use this function as part of waere clause as well.

LOWER() / LCASE()

Convert in lowercase the string argument

Syntax: LOWER(str)

LOWER ('fOoBar') —- 'foobar'
LCASE ('fOoBar') —- 'foobar'
REPLACE()

Convert in lowercase the string argument

Syntax: REPLACE(str, from_str, to_str)

REPLACE ('foobarbaz', 'bar', 'BAR') —-- 'fooBARbaz'
REPLACE ('foobarbaz', 'zzz', 'ZZZ') —-- 'foobarbaz'
SUBSTRING()

SUBSTRING (or equivalent: SUBSTR) returns the substring starting from the specified position

and, optionally, with the specified length

SyntaX:SUBSTRING(str, start_position)

SELECT SUBSTRING ('foobarbaz', 4); —-- 'barbaz'
SELECT SUBSTRING ('foobarbaz' FROM 4); —-- 'barbaz'

—-— using negative indexing
SELECT SUBSTRING ('foobarbaz', -6); —-- 'barbaz'
SELECT SUBSTRING ('foobarbaz' FROM -6); —-- 'barbaz'

Syntax: suBSTRING (str, start_position, length)

SELECT SUBSTRING ('foobarbaz', 4, 3); —-— 'bar'
SELECT SUBSTRING ('foobarbaz', FROM 4 FOR 3); -- 'bar'

—-— using negative indexing
SELECT SUBSTRING ('foobarbaz', -6, 3); —— 'bar'
SELECT SUBSTRING ('foobarbaz' FROM -6 FOR 3); —-- 'bar'

UPPER() / UCASE()

Convert in uppercase the string argument

Syntax: UPPER(str)

https://riptutorial.com/

211

UPPER ('fOoBar') —-- 'FOOBAR'
UCASE ('fOoBar') —-- 'FOOBAR'

LENGTH()

Return the length of the string in bytes. Since some characters may be encoded using more than
one byte, if you want the length in characters see CHAR_LENGTH()

Syntax: LENGTH(str)

LENGTH (' foobar') —-——- 6
LENGTH ('f66bar') —-- 8 —— contrast with CHAR_LENGTH(...) = 6

CHAR_LENGTH()

Return the number of characters in the string

Syntax: CHAR_LENGTH(str)

CHAR_LENGTH (' foobar') —-- 6
CHAR_LENGTH ('f&dbar') —-- 6 —-—- contrast with LENGTH(...) = 8
HEX(str)

Convert the argument to hexadecimal. This is used for strings.

HEX ('fodbar') —— 66F6F6626172 —— in "CHARACTER SET latinl" because "F6" is hex for &
HEX ('fodbar') —— 66C3B6C3B6626172 —— in "CHARACTER SET utf8 or utf8mb4" because "C3B6" is hex
for ©

Read String operations online: https://riptutorial.com/mysql/topic/1399/string-operations

https://riptutorial.com/ 212

https://riptutorial.com/mysql/topic/1399/string-operations

C_hapter 65: Table Creation

Syntax

« CREATE TABLE table_name (column_name1 data_type(size), column_name2
data_type(size), column_name3 data_type(size),); // Basic table creation

« CREATE TABLE table_name [IF NOT EXISTS] (column_name1 data_type(size),
column_name2 data_type(size), column_name3 data_type(size),); // Table creation
checking existing

« CREATE [TEMPORARY] TABLE table_name [IF NOT EXISTS] (column_name1
data_type(size), column_name?2 data_type(size), column_name3 data_type(size),); //
Temporary table creation

« CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl; // Table creation from SELECT

Remarks

The create taBLe Statement should end with an excine specification:

CREATE TABLE table_name (column_definitions) ENGINE=engine;

Some options are:

* 1nnobe: (Default since version 5.5.5) It's a transation-safe (ACID compliant) engine. It has
transaction commit and roll-back, and crash-recovery capabilities and row-level locking.

» myrsam: (Default before version 5.5.5) It's a plain-fast engine. It doesn't support transactions,
nor foreign keys, but it's useful for data-warehousing.

* Memory: Stores all data in RAM for extremely fast operations but table date will be lost on
database restart.

More engine options here.

Examples

Basic table creation
The create TaBLE Statement is used to create a table in a MySQL database.

CREATE TABLE Person (

"PersonlID’ INTEGER NOT NULL PRIMARY KEY,
"LastName" VARCHAR (80) ,

"FirstName" VARCHAR (80) ,

"Address” TEXT,

City” VARCHAR (100)

https://riptutorial.com/ 213

https://dev.mysql.com/doc/refman/5.5/en/storage-engines.html

) Engine=InnoDB;

Every field definition must have:

1. Field name: A valid field Name. Make sure to encolse the names in "-chars. This ensures
that you can use eg space-chars in the fieldname.

2. Data type [Length]: If the field is cuar Or varcuar, it is mandatory to specify a field length.

3. Attributes ~urt | not wure: If noT nuLL is specified, then any attempt to store a nurw value in
that field will fail.

4. See more on data types and their attributes here.

Engine=... IS an optional parameter used to specify the table's storage engine. If no storage engine
is specified, the table will be created using the server's default table storage engine (usually
InnoDB or MyISAM).

Setting defaults

Additionally, where it makes sense you can set a default value for each field by using peravrr:

CREATE TABLE Address (

"AddressID’ INTEGER NOT NULL PRIMARY KEY,
‘Street’ VARCHAR (80),

TCity® VARCHAR (80) ,

‘Country’ VARCHAR (80) DEFAULT "United States",
“Active’ BOOLEAN DEFAULT 1,

) Engine=InnoDB;

If during inserts no street is specified, that field will be vurt when retrieved. When no country is
specified upon insert, it will default to "United States".

You can set default values for all column types, except for sroe, texT, cGEoMETRY, aNd Json fields.

Table creation with Primary Key

CREATE TABLE Person (

PersonID INT UNSIGNED NOT NULL,
LastName VARCHAR (66) NOT NULL,
FirstName VARCHAR (66) ,

Address VARCHAR (255) ,

City VARCHAR (66) ,

PRIMARY KEY (PersonID)
)i

A primary key is a vor nurw single or a multi-column identifier which uniquely identifies a row of a
table. An index is created, and if not explicitly declared as ~or wurr, MySQL will declare them so
silently and implicitly.

A table can have only one rrivary xEY, @and each table is recommended to have one. InnoDB will
automatically create one in its absence, (as seen in MySQL documentation) though this is less

https://riptutorial.com/ 214

http://dev.mysql.com/doc/refman/5.7/en/data-types.html
http://dev.mysql.com/doc/refman/5.7/en/data-type-defaults.html
http://www.riptutorial.com/mysql/topic/1748/indexes-and-keys
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

desirable.

Often, an auto_tncrevenT 18T @lSO KNnown as "surrogate key", is used for thin index optimization and
relations with other tables. This value will (normally) increase by 1 whenever a new record is
added, starting from a default value of 1.

However, despite its name, it is not its purpose to guarantee that values are incremental, merely
that they are sequential and unique.

An auto-increment 1nt value will not reset to its default start value if all rows in the table are
deleted, unless the table is truncated using truncare r2e0e statement.

Defining one column as Primary Key (inline
definition)

If the primary key consists of a single column, the rrMary xev Clause can be placed inline with the
column definition:

CREATE TABLE Person (

PersonID INT UNSIGNED NOT NULL PRIMARY KEY,
LastName VARCHAR (66) NOT NULL,

FirstName VARCHAR (66) ,

Address VARCHAR (255) ,

City VARCHAR (66)

)i

This form of the command is shorter and easier to read.

Defining a multiple-column Primary Key

It is also possible to define a primary key comprising more than one column. This might be done
e.g. on the child table of a foreign-key relationship. A multi-column primary key is defined by listing
the participating columns in a separate rr1vary ey clause. Inline syntax is not permitted here, as
only one column may be declared pr1vary key inline. For example:

CREATE TABLE invoice_line_items (
LineNum SMALLINT UNSIGNED NOT NULL,
InvoiceNum INT UNSIGNED NOT NULL,
—— Other columns go here
PRIMARY KEY (InvoiceNum, LineNum),
FOREIGN KEY (InvoiceNum) REFERENCES -- references to an attribute of a table

)i

Note that the columns of the primary key should be specified in logical sort order, which may be
different from the order in which the columns were defined, as in the example above.

Larger indexes require more disk space, memory, and I/O. Therefore keys should be as small as

https://riptutorial.com/ 215

http://www.riptutorial.com/sql/topic/1466/truncate

possible (especially regarding composed keys). In InnoDB, every 'secondary index' includes a
copy of the columns of the privarY kEY.

Table creation with Foreign Key

CREATE TABLE Account (

AccountID INT UNSIGNED NOT NULL,
AccountNo INT UNSIGNED NOT NULL,
PersonID INT UNSIGNED,

PRIMARY KEY (AccountID),
FOREIGN KEY (PersonID) REFERENCES Person (PersonlID)
) ENGINE=InnoDB;

Foreign key: A Foreign Key (rx) is either a single column, or multi-column composite of columns,
in a referencing table. This rx is confirmed to exist in the referenced table. It is highly
recommended that the referenced table key confirming the rx be a Primary Key, but that is not
enforced. It is used as a fast-lookup into the referenced where it does not need to be unique, and
in fact can be a left-most index there.

Foreign key relationships involve a parent table that holds the central data values, and a child
table with identical values pointing back to its parent. The FOREIGN KEY clause is specified in the
child table. The parent and child tables must use the same storage engine. They must not be
TEMPORARY tables.

Corresponding columns in the foreign key and the referenced key must have similar data types.
The size and sign of integer types must be the same. The length of string types need not be the
same. For nonbinary (character) string columns, the character set and collation must be the same.

Note: foreign-key constraints are supported under the InnoDB storage engine (not MyISAM or
MEMORY). DB set-ups using other engines will accept this create TasLE Statement but will not
respect foreign-key constraints. (Although newer MySQL versions default to tnnops, but it is good
practice to be explicit.)

Cloning an existing table

A table can be replicated as follows:

CREATE TABLE ClonedPersons LIKE Persons;

The new table will have exactly the same structure as the original table, including indexes and
column attributes.

As well as manually creating a table, it is also possible to create table by selecting data from
another table:

CREATE TABLE ClonedPersons SELECT * FROM Persons;

You can use any of the normal features of a seLect statement to modify the data as you go:

https://riptutorial.com/ 216

https://dev.mysql.com/doc/refman/5.7/en/create-table.html

CREATE TABLE ModifiedPersons
SELECT PersonlID, FirstName + LastName AS FullName FROM Persons
WHERE LastName IS NOT NULL;

Primary keys and indexes will not be preserved when creating tables from serzct. You must
redeclare them:

CREATE TABLE ModifiedPersons (PRIMARY KEY (PersonID))
SELECT PersonID, FirstName + LastName AS FullName FROM Persons
WHERE LastName IS NOT NULL;

CREATE TABLE FROM SELECT

You can create one table from another by adding a sevLect statement at the end of the create TaBLE
statement:

CREATE TABLE stack (
id_user INT,
username VARCHAR (30),
password VARCHAR (30)
)i

Create a table in the same database:

—-— create a table from another table in the same database with all attributes
CREATE TABLE stack2 AS SELECT * FROM stack;

—-— create a table from another table in the same database with some attributes
CREATE TABLE stack3 AS SELECT username, password FROM stack;

Create tables from different databases:

—-— create a table from another table from another database with all attributes
CREATE TABLE stack2 AS SELECT * FROM second_db.stack;

—-— create a table from another table from another database with some attributes
CREATE TABLE stack3 AS SELECT username, password FROM second_db.stack;

N.B

To create a table same of another table that exist in another database, you need to specifies the
name of the database like this:

FROM NAME_DATABASE.name_table

Show Table Structure
If you want to see the schema information of your table, you can use one of the following:

SHOW CREATE TABLE child; -- Option 1

https://riptutorial.com/ 217

CREATE TABLE “child® (
“id’ int (11) NOT NULL AUTO_INCREMENT,
‘fullName' varchar (100) NOT NULL,
‘myParent® int (11) NOT NULL,
PRIMARY KEY (id’),
KEY "mommy_daddy’™ (' myParent’),
CONSTRAINT “mommy_daddy FOREIGN KEY (' myParent’) REFERENCES ‘“parent’ (id")
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

If used from the mysql commandline tool, this is less verbose:
SHOW CREATE TABLE child \G

A less descriptive way of showing the table structure:

mysqgl> CREATE TABLE Tabl (id int, name varchar (30));
Query OK, 0 rows affected (0.03 sec)

mysqgl> DESCRIBE Tabl; —-- Option 2

o o o +———— o o +
| Field | Type | Null | Key | Default | Extra |
o o o +———— o o +
| id | int (11) | YES | | NULL | |
| name | varchar (30) | YES | | NULL | |
o o o +———— o o +

Both DESCRIBE and DESC gives the same result.

To see pescriee performed on all tables in a database at once, see this Example.
Table Create With TimeStamp Column To Show Last Update
The TIMESTAMP column will show when the row was last updated.

CREATE TABLE " TestLastUpdate (
"ID' INT NULL,
‘Name®™ VARCHAR (50) NULL,
‘Address’ VARCHAR(50) NULL,
‘LastUpdate’™ TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)
COMMENT="'Last Update'

’

Read Table Creation online: https://riptutorial.com/mysql/topic/795/table-creation

https://riptutorial.com/ 218

http://stackoverflow.com/a/38679580
https://riptutorial.com/mysql/topic/795/table-creation

C_hapter 66: Temporary Tables

Examples

Create Temporary Table

Temporary tables could be very useful to keep temporary data. Temporary tables option is
available in MySQL version 3.23 and above.

Temporary table will be automatically destroyed when the session ends or connection is closed.
The user can also drop temporary table.

Same temporary table name can be used in many connections at the same time, because the
temporary table is only available and accessible by the client who creates that table.

The temporary table can be created in the following types

—-——->Basic temporary table creation
CREATE TEMPORARY TABLE tempTablel (
id INT NOT NULL AUTO_INCREMENT,
title VARCHAR (100) NOT NULL,
PRIMARY KEY (id)
)i

—-——>Temporary table creation from select query

CREATE TEMPORARY TABLE tempTablel
SELECT ColumnNamel, ColumnName2, ... FROM tablel;

You can add indexes as you build the table:

CREATE TEMPORARY TABLE tempTablel
(PRIMARY KEY (ColumnName2))
SELECT ColumnNamel, ColumnName2, ... FROM tablel;

1r noT ExI1sTs Key word can be used as mentioned below to avoid table already exists'error. But in
that case table will not be created, if the table name which you are using already exists in your
current session.

CREATE TEMPORARY TABLE IF NOT EXISTS tempTablel
SELECT ColumnNamel, ColumnName2, ... FROM tablel;

Drop Temporary Table

Drop Temporary Table is used to delete the temporary table which you are created in your current
session.

DROP TEMPORARY TABLE tempTablel

https://riptutorial.com/ 219

DROP TEMPORARY TABLE IF EXISTS tempTablel

Use 1r rx1sts to prevent an error occurring for tables that may not exist

Read Temporary Tables online: https://riptutorial.com/mysql/topic/5757/temporary-tables

https://riptutorial.com/ 220

https://riptutorial.com/mysql/topic/5757/temporary-tables

C_hapter 67: Time with subsecond precision

Remarks

You need to be at MySQL version 5.6.4 or later to declare columns with fractional-second time
datatypes.

For example, paterime (3) will give you millisecond resolution in your timestamps, and tivesTave (6)
will give you microsecond resolution on a *nix-style timestamp.

Read this: http://dev.mysqgl.com/doc/refman/5.7/en/fractional-seconds.html

now (3) Will give you the present time from your MySQL server's operating system with millisecond
precision.

(Notice that MySQL internal fractional arithmetic, like * 0.001, is always handled as IEEE754
double precision floating point, so it's unlikely you'll lose precision before the Sun becomes a white
dwarf star.)

Examples

Get the current time with millisecond precision
SELECT NOW (3)

does the trick.

Get the current time in a form that looks like a Javascript timestamp.

Javascript timestamps are based on the venerable UNIX time_t data type, and show the number
of milliseconds since 1970-01-01 00:00:00 UTC.

This expression gets the current time as a Javascript timestamp integer. (It does so correctly
regardless of the current time_zone setting.)

ROUND (UNIX_TIMESTAMP (NOW(3)) * 1000.0, 0)

If you have rrmestave values stored in a column, you can retrieve them as integer Javascript
timestamps using the UNIX_TIMESTAMP() function.

SELECT ROUND (UNIX_TIMESTAMP (column) * 1000.0, O0)

If your column contains paterive columns and you retrieve them as Javascript timestamps, those
timestamps will be offset by the time zone offset of the time zone they're stored in.

https://riptutorial.com/ 221

http://dev.mysql.com/doc/refman/5.7/en/fractional-seconds.html

Create a table with columns to store sub-second time.

CREATE TABLE times (
dt DATETIME (3),
ts TIMESTAMP (3)
)i

makes a table with millisecond-precision date / time fields.
INSERT INTO times VALUES (NOW(3), NOW(3));
inserts a row containing vow () values with millisecond precision into the table.

INSERT INTO times VALUES ('2015-01-01 16:34:00.123','2015-01-01 16:34:00.128");

inserts specific millisecond precision values.

Notice that you must use ~ow (3) rather than wow () if you use that function to insert high-precision
time values.

Convert a millisecond-precision date / time value to text.
st is the fractional precision format specifier for the DATE _FORMAT() function.
SELECT DATE_FORMAT (NOW(3), '$Y-%m-%d %$H:%i:%s.%f"')

displays a value like 2016-11-19 09:52:53.248000 With fractional microseconds. Because we used
Now (3), the final three digits in the fraction are 0.

Store a Javascript timestamp into a TIMESTAMP column

If you have a Javascript timestamp value, for example 1478960868932, you can convert that to a
MySQL fractional time value like this:

FROM_UNIXTIME (1478960868932 * 0.001)

It's simple to use that kind of expression to store your Javascript timestamp into a MySQL table.
Do this:

INSERT INTO table (col) VALUES (FROM_UNIXTIME (1478960868932 * 0.001))

(Obviously, you'll want to insert other columns.)

Read Time with subsecond precision online: https://riptutorial.com/mysql/topic/7850/time-with-
subsecond-precision

https://riptutorial.com/ 222

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_date-format
https://riptutorial.com/mysql/topic/7850/time-with-subsecond-precision
https://riptutorial.com/mysql/topic/7850/time-with-subsecond-precision

C_hapter 68: Transaction

Examples

Start Transaction

A transaction is a sequential group of SQL statements such as select,insert,update or delete,
which is performed as one single work unit.

In other words, a transaction will never be complete unless each individual operation within the
group is successful. If any operation within the transaction fails, the entire transaction will fail.

Bank transaction will be best example for explaining this. Consider a transfer between two
accounts. To achieve this you have to write SQL statements that do the following

1. Check the availability of requested amount in the first account
2. Deduct requested amount from first account
3. Deposit it in second account

If anyone these process fails, the whole should be reverted to their previous state.
ACID : Properties of Transactions
Transactions have the following four standard properties

» Atomicity: ensures that all operations within the work unit are completed successfully;
otherwise, the transaction is aborted at the point of failure, and previous operations are rolled
back to their former state.

» Consistency: ensures that the database properly changes states upon a successfully
committed transaction.

+ Isolation: enables transactions to operate independently of and transparent to each other.

 Durability: ensures that the result or effect of a committed transaction persists in case of a
system failure.

Transactions begin with the statement starT transacTron Or BEGIN work and end with either a comurt
or a rorueack Statement. The SQL commands between the beginning and ending statements form
the bulk of the transaction.

START TRANSACTION;

SET @transAmt = '500';

SELECT @availableAmt:=ledgerAmt FROM accTable WHERE customerId=1 FOR UPDATE;
UPDATE accTable SET ledgerAmt=ledgerAmt-@transAmt WHERE customerId=1;
UPDATE accTable SET ledgerAmt=ledgerAmt+@transAmt WHERE customerId=2;
COMMIT;

With starT TrRANSACTION, @UtOCOMMIt remains disabled until you end the transaction with comvrt or
rROLLBACK. |he autocommit mode then reverts to its previous state.

https://riptutorial.com/ 223

The ror urpate indicates (and locks) the row(s) for the duration of the transaction.
While the transaction remains uncommitted, this transaction will not be available for others users.
General Procedures involved in Transaction

» Begin transaction by issuing SQL command BeGIN WORK O START TRANSACTION.

* Run all your SQL statements.

« Check whether everything is executed according to your requirement.

* If yes, then issue comurr command, otherwise issue a rorreack command to revert everything
to the previous state.

» Check for errors even after comvrr if you are using, or might eventually use, Galera/PXC.

COMMIT , ROLLBACK and AUTOCOMMIT

AUTOCOMMIT

MySQL automatically commits statements that are not part of a transaction. The results of any
UPDATE,DELETE OF 1nseERT Statement not preceded with a secin or starT TrRANsAcTION WIll Immediately
be visible to all connections.

The autocomvrt variable is set true by default. This can be changed in the following way,

———>To make autcommit false
SET AUTOCOMMIT=false;

—-—or

SET AUTOCOMMIT=0;

—-——>To make autcommit true
SET AUTOCOMMIT=true;

—--or
SET AUTOCOMMIT=1;

To view autocommtT Status

SELECT @@autocommit;

COMMIT

If autocommrT Set to false and the transaction not committed, the changes will be visible only for the
current connection.

After commT statement commits the changes to the table, the result will be visible for all
connections.

We consider two connections to explain this

Connection 1

—-——>Before making autocommit false one row added in a new table
mysgl> INSERT INTO testTable VALUES (1);

https://riptutorial.com/ 224

—-——>Making autocommit = false
mysgl> SET autocommit=0;

mysqgl> INSERT INTO testTable VALUES (2), (3);
mysgl> SELECT * FROM testTable;

Connection 2

mysqgl> SELECT * FROM testTable;

+o———— +
| tId |
+o———— +
| 1]
+o———— +

—-——> Row inserted before autocommit=false only visible here

Connection 1

mysgl> COMMIT;
———>Now COMMIT is executed in connection 1
mysgl> SELECT * FROM testTable;

o +
| tId |
o +
| 1
| 2|
| 3
o +

Connection 2

mysgl> SELECT * FROM testTable;

to———— +
| tId |
to———— +
| 1]
| 2 |
| 3|
to———— +

———>Now all the three rows are visible here

ROLLBACK

If anything went wrong in your query execution, rorreack in used to revert the changes. See the
explanation below

—-——>Before making autocommit false one row added in a new table

https://riptutorial.com/ 225

mysqgl> INSERT INTO testTable VALUES (1);

—-——>Making autocommit = false
mysgl> SET autocommit=0;

mysqgl> INSERT INTO testTable VALUES (2), (3);
mysqgl> SELECT * FROM testTable;

o +
| tId |
o +
| i
| 2|
| 3|
o +

Now we are executing roLLBACK

———>Rollback executed now
mysgl> ROLLBACKk;

mysqgl> SELECT * FROM testTable;

+o———— +
| tId |
+o———— +
| 1]
+o———— +

—-——>Rollback removed all rows which all are not committed

Once comurt is executed, then rorieack will not cause anything

mysqgl> INSERT INTO testTable VALUES (2), (3);
mysgl> SELECT * FROM testTable;
mysgl> COMMIT;

o +
| tId |
o +
| 1
| 2|
| 3
o= +

—-——>Rollback executed now
mysgl> ROLLBACk;

mysgl> SELECT * FROM testTable;

o= +
| tId |
o= +
| 1
| 2|
| 3
o= +

———>Rollback not removed any rows
If auTocommrT IS set frue, then comvrt and rorieack is useless

Transaction using JDBC Driver

https://riptutorial.com/ 226

Transaction using JDBC driver is used to control how and when a transaction should commit and
rollback. Connection to MySQL server is created using JDBC driver

JDBC driver for MySQL can be downloaded here

Lets start with getting a connection to database using JDBC driver

Class.forName ("com.mysqgl. jdbc.Driver") ;
Connection con = DriverManager.getConnection (DB_CONNECTION_URL,DB_USER, USER_PASSWORD) ;
—-——>Example for connection url "jdbc:mysql://localhost:3306/testDB");

Character Sets : This indicates what character set the client will use to send SQL statements to
the server. It also specifies the character set that the server should use for sending results back to
the client.

This should be mentioned while creating connection to server. So the connection string should be
like,

Jjdbc:mysqgl://localhost:3306/testDB?useUnicode=true& characterEncoding=utf8

See this for more details about Character Sets and Collations

When you open connection, the autocomurT mode is set to true by default, that should be changed
false to start transaction.

con.setAutoCommit (false) ;

You should always call setautocommit () method right after you open a connection.

Otherwise use starT TrRansacTTON OF BEGIN work tO start a new transaction. By using start
TRANSACTTON Of BEGIN WORK, NO Need to change auvrtocomvrt false. That will be automatically disabled.

Now you can start transaction. See a complete JDBC transaction example below.

package jdbcTest;

import java.sgl.Connection;
import java.sqgl.PreparedStatement;
import java.sqgl.SQLException;

public class accTrans {
public static void doTransfer (double transAmount, int customerIdFrom, int customerIdTo) {
Connection con = null;
PreparedStatement pstmt = null;
ResultSet rs = null;
try {

String DB_CONNECTION_URL =
"Jjdbc:mysql://localhost:3306/testDB?useUnicode=true& characterEncoding=utf8";

https://riptutorial.com/ 227

https://dev.mysql.com/downloads/connector/j/5.0.html
http://www.riptutorial.com/mysql/topic/4569/character-sets-and-collations

Class.forName ("com.mysqgl. jdbc.Driver") ;
con = DriverManager.getConnection (DB_CONNECTION_URL,DB_USER,USER_PASSWORD) ;

—-——>set auto commit to false
con.setAutoCommit (false) ;
———> or use con.START TRANSACTION / con.BEGIN WORK

—-——>Start SQL Statements for transaction

———>Checking availability of amount

double availableAmt = 0;

pstmt = con.prepareStatement ("SELECT ledgerAmt FROM accTable WHERE customerId=?
FOR UPDATE");

pstmt.setInt (1, customerIdFrom);

rs = pstmt.executeQuery();

if (rs.next ())

availableAmt = rs.getDouble (1) ;

if (availableAmt >= transAmount)
{
—-——> Do Transfer
—-——> taking amount from cutomerIdFrom
pstmt = con.prepareStatement ("UPDATE accTable SET ledgerAmt=ledgerAmt-? WHERE
customerId=?");
pstmt.setDouble (1, transAmount);
pstmt.setInt (2, customerIdFrom);
pstmt.executeUpdate () ;

—-——> depositing amount in cutomerIdTo

pstmt = con.prepareStatement ("UPDATE accTable SET ledgerAmt=ledgerAmt+? WHERE
customerId=?");

pstmt.setDouble (1, transAmount);

pstmt.setInt (2, customerIdTo);

pstmt.executeUpdate () ;

con.commit () ;

}

—-——>If you performed any insert,update or delete operations before

————> this availability check, then include this else part

/*else { —-——>Rollback the transaction if availability is less than required
con.rollback () ;

}x/

} catch (SQLException ex) {
—-——> Rollback the transaction in case of any error
con.rollback () ;

} finally {

try {
if(rs != null) rs.close();
if (pstmt != null) pstmt.close();
if (con !'= null) con.close();

public static void main(String[] args) {
doTransfer (500, 1020, 1021);
—-—>doTransfer (transAmount, customerIdFrom, customerIdTo);

JDBC transaction make sure of all SQL statements within a transaction block are executed

https://riptutorial.com/ 228

successful, if either one of the SQL statement within transaction block is failed, abort and rollback
everything within the transaction block.

Read Transaction online: https://riptutorial.com/mysql/topic/5771/transaction

https://riptutorial.com/ 229

https://riptutorial.com/mysql/topic/5771/transaction

C_hapter 69: TRIGGERS

Syntax

CREATE [DEFINER = { user | CURRENT_USER }] TRIGGER trigger_name trigger_time
trigger_event ON tbl_name FOR EACH ROW [trigger_order] trigger_body

trigger_time: { BEFORE | AFTER }

« trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

Remarks

Two points need to draw your attention if you already use triggers on others DB :

FOR EACH ROW

FOR EACH Row iS @ mandatory part of the syntax

You can't make a statement trigger (once by query) like Oracle do. It's more a performance related
issue than a real missing feature

CREATE OR REPLACE TRIGGER

The create or reprack iS NOt supported by MySQL

MySQL don't allow this syntax, you have instead to use the following :

DELIMITER $$

DROP TRIGGER IF EXISTS myTrigger;

$S
CREATE TRIGGER myTrigger

$9
DELIMITER ;

Be careful, this is not an atomic transaction :

+ you'll loose the old trigger if the create fail

» on a heavy load, others operations can occurs between the pror and the creats, Use a rock
TABLES myTable WrITE; firSt to avoid data inconsistency and untock taeLes; after the create to
release the table

https://riptutorial.com/ 230

Examples

Basic Trigger
Create Table

mysgl> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

Create Trigger

mysqgl> CREATE TRIGGER ins_sum BEFORE INSERT ON account
—-> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger action time, the triggering event, and
what to do when the trigger activates

Insert Value

To use the trigger, set the accumulator variable (@sum) to zero, execute an INSERT statement,
and then see what value the variable has afterward:

mysql> SET Q@sum = 0;
mysqgl> INSERT INTO account VALUES (137,14.98), (141,1937.50), (97,-100.00) ;
mysgl> SELECT @sum AS 'Total amount inserted';

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

Drop Trigger
mysgl> DROP TRIGGER test.ins_sum;
If you drop a table, any triggers for the table are also dropped.

Types of triggers

Timing

There are two trigger action time modifiers :

https://riptutorial.com/ 231

+ Berore trigger activates before executing the request,
 arTER trigger fire after change.

Triggering event

There are three events that triggers can be attached to:

® INSERT
® UPDATE
®* DELETE

Before Insert trigger example

DELIMITER $$

CREATE TRIGGER insert_date
BEFORE INSERT ON stack
FOR EACH ROW
BEGIN
—— set the insert_date field in the request before the insert
SET NEW.insert_date = NOW();
END;

$S
DELIMITER ;

Before Update trigger example

DELIMITER $$

CREATE TRIGGER update_date
BEFORE UPDATE ON stack
FOR EACH ROW
BEGIN
—— set the update_date field in the request before the update
SET NEW.update_date = NOW() ;
END;

$S
DELIMITER ;

After Delete trigger example

DELIMITER $$

CREATE TRIGGER deletion_date
AFTER DELETE ON stack
FOR EACH ROW

https://riptutorial.com/

232

BEGIN
—-— add a log entry after a successful delete
INSERT INTO log_action(stack_id, deleted_date) VALUES (OLD.id, NOW());
END;

$9
DELIMITER ;

Read TRIGGERS online: https://riptutorial.com/mysql/topic/3069/triggers

https://riptutorial.com/ 233

https://riptutorial.com/mysql/topic/3069/triggers

Chapter 70: UNION

Syntax

UNION DISTINCT -- dedups after combining the SELECTs

UNION ALL -- non dedup (faster)

UNION -- the default is DISTINCT

SELECT ... UNION SELECT ... -- is OK, but ambiguous on orper BY

(SELECT ...) UNION (SELECT ...) ORDER BY ... -- resolves the ambiguity

Remarks

UNION does not use multiple CPUs.

UNION always* involves a temp table to collect the results. *As of 5.7.3 / MariaDB 10.1, some
forms of UNION deliver the results without using a tmp table (hence, faster).

Examples

Combining SELECT statements with UNION

You can combine the results of two identically structured queries with the unzon keyword.

For example, if you wanted a list of all contact info from two separate tables, authors and editors,
for instance, you could use the unron keyword like so:

select name, email, phone_number
from authors

union

select name, email, phone_number
from editors

Using union by itself will strip out duplicates. If you needed to keep duplicates in your query, you
could use the a1 keyword like so: unton aLL.

ORDER BY
If you need to sort the results of a UNION, use this pattern:

(SELECT ...)
UNION

(SELECT ...)
ORDER BY

Without the parentheses, the final ORDER BY would belong to the last SELECT.

https://riptutorial.com/ 234

Pagination via OFFSET

When adding a LIMIT to a UNION, this is the pattern to use:

(SELECT ... ORDER BY x LIMIT 10)
UNION
(SELECT ... ORDER BY x LIMIT 10)

ORDER BY x LIMIT 10

Since you cannot predict which SELECT(s) will the "10" will come from, you need to get 10 from
each, then further whittle down the list, repeating both the oroer v and vimrr.

For the 4th page of 10 items, this pattern is needed:

(SELECT ... ORDER BY x LIMIT 40)
UNION
(SELECT ... ORDER BY x LIMIT 40)

ORDER BY x LIMIT 30, 10

That is, collect 4 page's worth in each serect, then do the orrser in the untow.

Combining data with different columns

SELECT name, caption as title, year, pages FROM books
UNION
SELECT name, title, year, 0 as pages FROM movies

When combining 2 record sets with different columns then emulate the missing ones with default
values.

UNION ALL and UNION

SELECT 1,22,44 UNION SELECT 2,33,55

== S5 @R B=
22 44

1
I 22 o
2 33 55
SELECT 1,22,44 UNION SELECT 2,33,55 UNION SELECT 2,33,55
The result is the same as above.
use UNION ALL

when

SELECT 1,22,44 UNION SELECT 2,33,55 UNION ALL SELECT 2,33,55

https://riptutorial.com/ 235

http://i.stack.imgur.com/rF9SA.png

=5 £F1 |R H=
1 22 44
» 1 22 44
33 55
2 33 55

Combining and merging data on different MySQL tables with the same
columns into unique rows and running query

This UNION ALL combines data from multiple tables and serve as a table name alias to use for
your queries:

SELECT YEAR (date_time_column), MONTH (date_time_column), MIN (DATE (date_time_column)),

MAX (DATE (date_time_column)), COUNT (DISTINCT (ip)), COUNT (ip), (COUNT (ip) / COUNT (DISTINCT
(ip))) AS Ratio
FROM (

(SELECT date_time_column, ip FROM server_log_1l WHERE state = 'action' AND log_id = 150)
UNION ALL

(SELECT date_time_column, ip FROM server_log_2 WHERE state = 'action' AND log_id = 150)
UNION ALL

(SELECT date_time_column, ip FROM server_log_3 WHERE state = 'action' AND log_id = 150)
UNION ALL

(SELECT date_time_column, ip FROM server_log WHERE state = 'action' AND log_id = 150)

) AS table_all
GROUP BY YEAR (date_time_column), MONTH (date_time_column) ;

Read UNION online: https:/riptutorial.com/mysql/topic/3847/union

https://riptutorial.com/

236

http://i.stack.imgur.com/tD1Rz.png
https://riptutorial.com/mysql/topic/3847/union

Chapter 71: UPDATE

Syntax

 UPDATE [LOW_PRIORITY][IGNORE] tableName SET column1 = expression1, column2
= expression2, ... [WHERE conditions]; //Simple single table update

 UPDATE [LOW_PRIORITY][IGNORE] tableName SET columni = expression1, column2
= expression2, ... [WHERE conditions] [ORDER BY expression [ASC | DESC]] [LIMIT
row_count]; /Update with order by and limit

« UPDATE [LOW_PRIORITY] [IGNORE] table1, table2, ... SET column1 = expressioni,
column2 = expression2, ... [WHERE conditions]; /Multiple Table update

Examples

Basic Update

Updating one row

UPDATE customers SET email='luke_smith@email.com' WHERE id=1

This query Updates the content of emai1 in the customers table to the String luke_smith@email.com
where the value of id is equal to 1. The old and new contents of the database table are illustrated
below on the left and right respectively:

customers customers
id | firstname | lastname email id | firstname |lastname email
1 (Luke Smith luke@example.com 1 (Luke Smith luke_smith@email com
2 |Anna Carey anna @example com 2 |Anna Carey anna@example.com
3 |Todd Wmters |todd@example.com 3 |Todd Winters |todd@example.com

Updating all rows

UPDATE customers SET lastname='smith'

This query update the content of 1astname for every entry in the custoners table. The old and new
contents of the database table are illustrated below on the left and right respectively:

https://riptutorial.com/ 237

http://i.stack.imgur.com/IeWcs.png

Ccustomers customers

id | firstname | lastname email id | firstname | lastname email

1 (Luke Smith luke@ example com 1 (Luke Smuth luke(@ example.com
2 |Anna Carey anna/@example.com 2 |Anna Smuth anna@example.com
3 |Todd Winters |todd@example.com 3 |Todd Smith todd@example.com

Notice: It is necessary to use conditional clauses (WHERE) in UPDATE query. If you do not use
any conditional clause then all records of that table's attribute will be updated. In above example
new value (Smith) of lastname in customers table set to all rows.

Update with Join Pattern

Consider a production table called questions_mysql and a table iwtouestions (imported worktable)
representing the last batch of imported CSV data from a 1020 pata twrrie. The worktable is
truncated before the import, the data is imported, and that process is not shown here.

Update our production data using a join to our imported worktable data.

UPDATE questions_mysgl g —- our real table for production
join iwtQuestions i —-- imported worktable

ON i.gId = g.gId

SET g.closeVotes = i.closeVotes,

g.votes = i.votes,

Jg.answers i.answers,

g.views = i.views;

Aliases g and i are used to abbreviate the table references. This eases development and
readability.

q14, the Primary Key, represents the Stackoverflow question id. Four columns are updated for
matching rows from the join.

UPDATE with ORDER BY and LIMIT

If the orpEr BY Clause is specified in your update SQL statement, the rows are updated in the order
that is specified.

If vzt clause is specified in your SQL statement, that places a limit on the number of rows that
can be updated. There is no limit, if LiurT clause not specified.

orber BY and rmrt cannot be used for multi table update.

Syntax for the MySQL uvepate with oroer BY @and vimit is,

UPDATE [LOW_PRIORITY] [IGNORE]
tableName
SET columnl = expressionl,

column?2 = expression2,

[WHERE conditions]
[ORDER BY expression [ASC | DESC]]

https://riptutorial.com/ 238

http://i.stack.imgur.com/jUYMk.png
http://dev.mysql.com/doc/refman/5.7/en/load-data.html

[LIMIT row_count];

—-——> Example
UPDATE employees SET isConfirmed=1 ORDER BY joiningDate LIMIT 10

In the above example, 10 rows will be updated according to the order of employees jciningpate.

Multiple Table UPDATE

In multiple table vepate, it updates rows in each specified tables that satisfy the conditions. Each
matching row is updated once, even if it matches the conditions multiple times.

In multiple table vepate, oroer BY @and rimvit cannot be used.

Syntax for multi table vepare is,

UPDATE [LOW_PRIORITY] [IGNORE]

tablel, table2,
SET columnl = expressionl,
column2 = expressionz,

[WHERE conditions]

For example consider two tables, products and salesorders. In case, we decrease the quantity of a
particular product from the sales order which is placed already. Then we also need to increase
that quantity in our stock column of proaucts table. This can be done in single SQL update
statement like below.

UPDATE products, salesOrders
SET salesOrders.Quantity = salesOrders.Quantity - 5,
products.availableStock = products.availableStock + 5
WHERE products.productId = salesOrders.productId
AND salesOrders.orderId = 100 AND salesOrders.productId = 20;

In the above example, quantity '5' will be reduced from the saiesorders table and the same will be
increased in products table according to the waere conditions.

Bulk UPDATE
When updating multiple rows with different values it is much quicker to use a bulk update.

UPDATE people
SET name =
(CASE id WHEN 1 THEN 'Karl'
WHEN 2 THEN 'Tom'
WHEN 3 THEN 'Mary'
END)
WHERE id IN (1,2,3);

By bulk updating only one query can be sent to the server instead of one query for each row to
update. The cases should contain all possible parameters looked up in the waere clause.

https://riptutorial.com/ 239

Read UPDATE online: https:/riptutorial.com/mysql/topic/2738/update

https://riptutorial.com/ 240

https://riptutorial.com/mysql/topic/2738/update

C_hapter 72: Using Variables

Examples

Setting Variables

Here are some ways to set variables:
1. You can set a variable to a specific, string, number, date using SET
EX: SET @var_string = 'my_var'; SET @var_num = '2' SET @var_date = '2015-07-20';
2. you can set a variable to be the result of a select statement using :=

EX: Select @var :='123'; (Note: You need to use := when assigning a variable not using the
SET syntax, because in other statements, (select, update...) the "=" is used to compare, so
when you add a colon before the "=", you are saying "This is not a comparison, this is a
SET")

3. You can set a variable to be the result of a select statement using INTO

(This was particularly helpful when | needed to dynamically choose which Partitions to query
from)

EX: SET @start_date = '2015-07-20"; SET @end_date = '2016-01-31";

#this gets the year month value to use as the partition names
SET @start_yearmonth = (SELECT EXTRACT (YEAR_MONTH FROM @start_date));
SET @end_yearmonth = (SELECT EXTRACT (YEAR_MONTH FROM (@end_date)) ;

#put the partitions into a variable

SELECT GROUP_CONCAT (partition_name)

FROM information_schema.partitions p

WHERE table_name = 'partitioned_table'

AND SUBSTRING_INDEX (partition_name, 'P',-1) BETWEEN (@start_yearmonth AND @end_yearmonth
INTO @partitions;

#put the query in a variable. You need to do this, because mysgl did not recognize my variable
as a variable in that position. You need to concat the value of the variable together with the
rest of the query and then execute it as a stmt.

SET Qquery =

CONCAT ('CREATE TABLE part_of_partitioned_table (PRIMARY KEY (id))

SELECT partitioned_table.*

FROM partitioned_table PARTITION(', @partitions,')

JOIN users u USING (user_id)

WHERE date (partitioned_table.date) BETWEEN ', @start_date,' AND ', @end_date);

#prepare the statement from Qquery

PREPARE stmt FROM (Qquery;

#drop table

DROP TABLE IF EXISTS tech.part_of_partitioned_table;
#create table using statement

EXECUTE stmt;

https://riptutorial.com/ 241

Row Number and Group By using variables in Select Statement

Let's say we have a table team person as below:

NS s +
| team | person |
NS s +
| A | John |
f— fom +
| B | Smith |
f— fom +
| A | Walter |
f— fom +
| A | Louis |
f— fom +
| C | Elizabeth |
f— fom +
| B | Wayne |
f— fom +

CREATE TABLE team_person AS SELECT 'A' team, 'John' person
UNION ALL SELECT 'B' team, 'Smith' person

UNION ALL SELECT 'A' team, 'Walter' person

UNION ALL SELECT 'A' team, 'Louis' person

UNION ALL SELECT 'C' team, 'Elizabeth' person

UNION ALL SELECT 'B' team, 'Wayne' person;

To select the table team_person with additional row_number column, either

SELECT @row_no := @row_no+l AS row_number, team, person
FROM team_person, (SELECT @row_no := 0) t;

SET @row_no := 0;

SELECT (@row_no := @row_no + 1 AS row_number, team, person

FROM team_person;

will output the result below:

+ + + +
| row_number | team | person |
+ + + +
| 1| A | John |
fom o fom +
| 2 | B | Smith |
fom o fom +
| 3 A | Walter |
fom o fom +
| 4 | A | Louis |
fom o fom +
| 5 | C | Elizabeth |
fom o fom +
| 6 | B | Wayne |
fom o fom +

https://riptutorial.com/ 242

Finally, if we want to get the row_number group by column team

SELECT @row_no := IF (@prev_val = t.team, @row_no + 1, 1) AS row_number
,@prev_val := t.team AS team
,t.person
FROM team_person t,
(SELECT Qrow_no := 0) x,
(SELECT @prev_val := ''") y
ORDER BY t.team ASC,t.person DESC;

} +
| row_number | team | person |

} } +
| 1 | A | Walter |
o ———— +————— o +
| 2 | A | Louis |
o ———— +————— o +
| 3 | A | John |
o ———— +————— o +
| 1 | B | Wayne |
o ———— +————— o +
| 2 B | Smith |
o ———— +————— o +
| 1 | C | Elizabeth |
o ———— +————— o +

Read Using Variables online: https:/riptutorial.com/mysql/topic/5013/using-variables

https://riptutorial.com/ 243

https://riptutorial.com/mysql/topic/5013/using-variables

Chapter 73: VIEW

Syntax

« CREATE VIEW view_name AS SELECT column_name(s) FROM table_name WHERE
condition; //Simple create view syntax

« CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }] [SQL SECURITY { DEFINER | INVOKER }] VIEW
view_name [(column_list)] AS select_statement [WITH [CASCADED | LOCAL] CHECK
OPTION]J; /// Full Create view syntax

« DROP VIEW [IF EXISTS] [db_name.]view_name; ///Drop view syntax

Parameters

s oot
view_name Name of View
SELECT SQL statements to be packed in the views. It can be a SELECT statement
statement to fetch data from one or more tables.

Remarks

Views are virtual tables and do not contain the data that is returned. They can save you from
writing complex queries again and again.

- Before a view is made its specification consists entirely of a serect statement. The serect
statement cannot contain a sub-query in the FROM clause.

» Once a view is made it is used largely just like a table and can be sevLecred from just like a
table.

You have to create views, when you want to restrict few columns of your table, from the other
user.

» For example: In your organization, you want your managers to view few information from a
table named-"Sales", but you don't want that your software engineers can view all fields of
table-"Sales". Here, you can create two different views for your managers and your software
engineers.

Performance. vieus are syntactic sugar. However there performance may or may not be worse
than the equivalent query with the view's select folded in. The Optimizer attempts to do this "fold
in" for you, but is not always successful. MySQL 5.7.6 provides some more enhancements in the
Optimizer. But, regardless, using a view will not generate a faster query.

https://riptutorial.com/ 244

Examples

Create a View

Privileges

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some
privilege for each column selected by the SELECT statement. For columns used elsewhere in the
SELECT statement, you must have the SELECT privilege. If the OR REPLACE clause is present,
you must also have the DROP privilege for the view. CREATE VIEW might also require the
SUPER privilege, depending on the DEFINER value, as described later in this section.

When a view is referenced, privilege checking occurs.

A view belongs to a database. By default, a new view is created in the default database. To create
the view explicitly in a given database, use a fully qualified name

For Example:

db_name.view_name

mysgl> CREATE VIEW test.v AS SELECT * FROM t;

Note - Within a database, base tables and views share the same namespace, so a base table and
a view cannot have the same name.

A VIEW can:

* be created from many kinds of SELECT statements
+ refer to base tables or other views

+ use joins, UNION, and subqueries

» SELECT need not even refer to any tables

Another Example

The following example defines a view that selects two columns from another table as well as an
expression calculated from those columns:

mysqgl> CREATE TABLE t (gty INT, price INT);

mysgl> INSERT INTO t VALUES (3, 50);

mysqgl> CREATE VIEW v AS SELECT gty, price, gty*price AS value FROM t;
mysqgl> SELECT * FROM v;

o o o +
| gty | price | value |
o o o +
| 3 | 50 | 150 |
o o o +

Restrictions

https://riptutorial.com/ 245

» Before MySQL 5.7.7, the SELECT statement cannot contain a subquery in the FROM
clause.

» The SELECT statement cannot refer to system variables or user-defined variables.

 Within a stored program, the SELECT statement cannot refer to program parameters or local
variables.

« The SELECT statement cannot refer to prepared statement parameters.

» Any table or view referred to in the definition must exist. After the view has been created, it is
possible to drop a table or view that
the definition refers to. In this case, use of the view results in an error. To check a view
definition for problems of this kind, use the CHECK TABLE statement.

» The definition cannot refer to a TEMPORARY table, and you cannot
create a TEMPORARY view.

* You cannot associate a trigger with a view.

+ Aliases for column names in the SELECT statement are checked against the maximum
column length of 64 characters (not the maximum alias
length of 256 characters).

* A view may or may not optimize as well as the equivalent serect. It is unlikely to optimize any
better.

A view from two tables
A view is most useful when it can be used to pull in data from more than one table.

CREATE VIEW myview AS

SELECT a.*, b.extra_data FROM main_table a
LEFT OUTER JOIN other_table b

ON a.id = b.id

In mysql views are not materialized. If you now perform the simple query seLect * FrOM myview,
mysql will actually perform the LEFT JOIN behind the scene.

A view once created can be joined to other views or tables
Updating a table via a VIEW

A view acts very much like a table. Although you can vepate a table, you may or may not be able to
update a view into that table. In general, if the sevect in the view is complex enough to require a
temp table, then vepate is not allowed.

Things like crour BY, UnTON, HAVING, DIsTINCT, @Nd SOMe subqueries prevent the view from being
updatable. Details in reference manual.

DROPPING A VIEW
-- Create and drop a view in the current database.

CREATE VIEW few_rows_from_tl AS SELECT * FROM tl LIMIT 10;
DROP VIEW few_rows_from_t1;

https://riptutorial.com/ 246

http://dev.mysql.com/doc/refman/5.7/en/view-updatability.html

-- Create and drop a view referencing a table in a different database.

CREATE VIEW table_from_other _db AS SELECT x FROM dbl.foo WHERE x IS NOT NULL;
DROP VIEW table_from_ other_db;

Read VIEW online: https://riptutorial.com/mysql/topic/1489/view

https://riptutorial.com/ 247

https://riptutorial.com/mysql/topic/1489/view

Credits

E Chapters Contributors

10

11

12

13

Getting started with
MySQL

ALTER TABLE

Arithmetic

Backticks

Backup using mysgldump

Change Password

Character Sets and
Collations

Clustering

Comment Mysql

Configuration and tuning

Connecting with UTF-8
Using Various
Programming language.

Converting from MyISAM
to InnoDB

Create New User

A. Raza, Aman Dhanda, Andy, Athafoud, CodeWarrior,
Community, Confiqure, Dipen Shah, e4c5, Epodax,
Giacomo Garabello, greatwolf, inetphantom, JayRizzo,
juergen d, Lahiru Ashan, Lambda Ninja, Magisch, Marek
Skiba, Md. Nahiduzzaman Rose, moopet, msohng, Noah
van der Aa, O. Jones, OverCoder, Panda, Parth Patel,
rap-2-h, rhavendc, Romain Vincent, YCF_L

e4ch, JohnLBevan, kolunar, LiuYan , Matas Vaitkevicius,
mayojava, Rick James, Steve Chambers, Thuta Aung,
WAF, YCF L

Barranka, Dinidu, Drew, JonMark Perry, O. Jones,
RamenChef, Richard Hamilton, Rick James

Drew, SuperDJ

agold, Asaph, Barranka, Batsu, KalenGi, Mark Amery,
Matthew, mnoronha, Ponnarasu, RamenChef, Rick James
, still_learning, strangeqgargo, Sumit Gupta, Timothy, WAF

edch, Hardik Kanjariya */, Rick James, Viktor,
ydaetskcoR

frlan, Rick, Rick James

Drew, Rick James
Franck Dernoncourt, Rick James, WAF, YCF L

ChintaMoney, CodeWarrior, Epodax, Eugene, jan_kiran,

Rick James

Epodax, Rick James

Ponnarasu, Rick James, yukoff

Aminadav, Batsu, Hardik Kanjariya */, josinalvo, Rick

https://riptutorial.com/

248

https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4664880/aman-dhanda
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/1658480/codewarrior
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/4841794/dipen-shah
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/4573548/giacomo-garabello
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/2828611/inetphantom
https://riptutorial.com/contributor/1896134/jayrizzo
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/3649961/md--nahiduzzaman-rose
https://riptutorial.com/contributor/413354/moopet
https://riptutorial.com/contributor/3208967/msohng
https://riptutorial.com/contributor/7137669/noah-van-der-aa
https://riptutorial.com/contributor/7137669/noah-van-der-aa
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/2164304/overcoder
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/5901077/rhavendc
https://riptutorial.com/contributor/6219628/romain-vincent
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/404192/liuyan---
https://riptutorial.com/contributor/404192/liuyan---
https://riptutorial.com/contributor/404192/liuyan---
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1063716/steve-chambers
https://riptutorial.com/contributor/5957479/thuta-aung
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/355931/barranka
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/4361999/jonmark-perry
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/3390200/superdj
https://riptutorial.com/contributor/1771479/agold
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/355931/barranka
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/212076/kalengi
https://riptutorial.com/contributor/1709587/mark-amery
https://riptutorial.com/contributor/1803682/matthew
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/5006740/strangeqargo
https://riptutorial.com/contributor/1160395/sumit-gupta
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/2915834/frlan
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/4356985/chintamoney
https://riptutorial.com/contributor/1658480/codewarrior
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/2178980/eugene
https://riptutorial.com/contributor/2286306/jan-kiran
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/3974177/yukoff
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/1114872/josinalvo
https://riptutorial.com/contributor/1766831/rick-james

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Creating databases

Customize PS1

Data Types

Date and Time Operations

Dealing with sparse or
missing data

DELETE

Drop Table

Dynamic Un-Pivot Table
using Prepared Statement

ENUM

Error 1055:

ONLY_FULL_GROUP_BY:

something is not in
GROUP BY clause ...

Error codes

Events

Extract values from JSON
type

Full-Text search

Group By

Handling Time Zones

Indexes and Keys

James, WAF

Daniel Kafer, Drew, Ponnarasu, R.K123, Rick James,
still_learning

Eugene, Wenzhong

Batsu, dakab, Drew, Dylan Vander Berg, e4c5, juergen d,
MohaMad, Richard Hamilton, Rick James

Abhishek Aggrawal, Drew, Matt S, O. Jones, Rick James,
Sumit Gupta

Batsu, Nate Vaughan

Batsu, Drew, e4c5, ForguesR, gabe3886, Khurram, Parth
Patel, Ponnarasu, Rick James, strangegargo, WAF,
whrrgarbl, ypercube, Vinbs NnoTHrkoB

Noah van der Aa, Parth Patel, Ponnarasu, R.K123, Rick
James, trf, Tushar patel, YCF_L

rpd

Philipp, Rick James

Damian Yerrick, O. Jones

Drew, e4c5, juergen d, Lucas Paolillo, O. Jones,
Ponnarasu, Rick James, WAF, Wojciech Kazior

Drew, rene

MohaMad

O. Jones

Adam, Filipe Martins, Lijo, Rick James, Thuta Aung, WAF,
whrrgarbl

O. Jones

Alex Recarey, Barranka, Ben Visness, Drew, kolunar,
Rick James, Sanjeev kumar

https://riptutorial.com/

249

https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/6322837/r-k123
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/2178980/eugene
https://riptutorial.com/contributor/6191533/wenzhong
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/2083613/dakab
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/2297366/dylan-vander-berg
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/7529266/mohamad
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/4932070/abhishek-aggrawal
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1160395/sumit-gupta
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/4280615/nate-vaughan
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1980659/forguesr
https://riptutorial.com/contributor/418482/gabe3886
https://riptutorial.com/contributor/6684190/khurram
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5006740/strangeqargo
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/812786/whrrgarbl
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/4624423/--------------
https://riptutorial.com/contributor/7137669/noah-van-der-aa
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/6322837/r-k123
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2681568/trf
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/4117869/rpd
https://riptutorial.com/contributor/3595565/philipp
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2738262/damian-yerrick
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/3481973/lucas-paolillo
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/578411/rene
https://riptutorial.com/contributor/7529266/mohamad
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/1614156/filipe-martins
https://riptutorial.com/contributor/3065232/lijo
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5957479/thuta-aung
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/812786/whrrgarbl
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/166272/alex-recarey
https://riptutorial.com/contributor/355931/barranka
https://riptutorial.com/contributor/1177139/ben-visness
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5164379/sanjeev-kumar

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

INSERT

Install Mysql container with
Docker-Compose

Joins

JOINS: Join 3 table with
the same name of id.

JSON

Limit and Offset

LOAD DATA INFILE

Log files

Many-to-many Mapping
table

MyISAM Engine

MySQL Admin

MySQL client

MySQL LOCK TABLE
Mysql Performance Tips
MySQL Unions
mysqlimport

NULL

One to Many

ORDER BY

0x49D1, AbcAeffchen, Abubakkar, Aukhan, CGritton,
Dinidu, Dreamer, Drew, e4c5, fnkr, gabe3886, Horen,
Hugo Buff, lan Kenney, Johan, Magisch, NEER, Parth
Patel, Philipp, Rick James, Riho, strangeqgargo, Thuta
Aung, zeppelin

Marc Alff, molavec

Artisan72, Batsu, Benvorth, Bikash P, Drew, Matt, Philipp,
Rick, Rick James, user3617558

FMashiro

A. Raza, Ben, Drew, e4c5, Manatax, Mark Amery,
MohaMad, phatfingers, Rick James, sunkuet02

Alvaro Flano Larrondo, Ani Menon, animuson,

ChaoticTwist, Chris Rasys, CPHPython, lan Gregory, Matt

S, Rick James, Sumit Gupta, WAF

aries12, Asaph, bhrached, CGritton, e4c5, RamenChef,
Rick James, WAF

Drew, Rick James

Rick James

Rick James

Florian Genser, Matas Vaitkevicius, RationalDev, Rick
James

Batsu, Nathaniel Ford, Rick James

Ponnarasu, Rick James, vijeeshin

arushi, RamenChef, Rick James, Rodrigo Darti da Costa
Ani Menon, Rick James

Batsu

Rick James, Sumit Gupta

falsefive

Florian Genser, Rick James

https://riptutorial.com/

250

https://riptutorial.com/contributor/47672/0x49d1
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/1379089/aukhan
https://riptutorial.com/contributor/4520025/cgritton
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/7008582/dreamer
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1485952/fnkr
https://riptutorial.com/contributor/418482/gabe3886
https://riptutorial.com/contributor/1503476/horen
https://riptutorial.com/contributor/3392335/hugo-buff
https://riptutorial.com/contributor/2308473/ian-kenney
https://riptutorial.com/contributor/6007479/johan
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/6468577/neer
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/3595565/philipp
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/44715/riho
https://riptutorial.com/contributor/5006740/strangeqargo
https://riptutorial.com/contributor/5957479/thuta-aung
https://riptutorial.com/contributor/5957479/thuta-aung
https://riptutorial.com/contributor/2788297/zeppelin
https://riptutorial.com/contributor/1157540/marc-alff
https://riptutorial.com/contributor/1278487/molavec
https://riptutorial.com/contributor/3862511/artisan72
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/1460461/benvorth
https://riptutorial.com/contributor/5536889/bikash-p
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/5934686/matt
https://riptutorial.com/contributor/3595565/philipp
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/3617558/user3617558
https://riptutorial.com/contributor/4461980/fmashiro
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/676097/ben
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1489912/manatax
https://riptutorial.com/contributor/1709587/mark-amery
https://riptutorial.com/contributor/7529266/mohamad
https://riptutorial.com/contributor/1031887/phatfingers
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2315473/sunkuet02
https://riptutorial.com/contributor/974822/alvaro-flano-larrondo
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/532744/chris-rasys
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/66482/ian-gregory
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1160395/sumit-gupta
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/6339417/aries12
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/5963966/bhrached
https://riptutorial.com/contributor/4520025/cgritton
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5337924/florian-genser
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/6680925/vijeeshin
https://riptutorial.com/contributor/3235559/arushi
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5689100/rodrigo-darti-da-costa
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1160395/sumit-gupta
https://riptutorial.com/contributor/1910400/falsefive
https://riptutorial.com/contributor/5337924/florian-genser
https://riptutorial.com/contributor/1766831/rick-james

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Partitioning
Performance Tuning
Pivot queries
PREPARE Statements

Recover and reset the
default root password for
MySQL 5.7+

Recover from lost root
password

Regular Expressions
Replication
Reserved Words

Security via GRANTs

SELECT

Server Information

SSL Connection Setup

Stored routines

(procedures and functions)

String operations

Table Creation

Majid, Rick James
e4c5, RamenChef, Rick James
Barranka

kolunar, Rick James, winter

Lahiru, ParthaSen

BaclLuc, Jen R

user2314737, YCF_L
Ponnarasu

juergen d, user2314737
Rick James

Ani Menon, Asjad Athick, Benvorth, Bhavin Solanki, Chip,
Drew, greatwolf, Inzimam Tariq IT, julienc, KartikKannapur
, Kruti Patel, Matthis Kohli, O. Jones, Ponnarasu, Rick
James, SeeuD1, Thislslmpossible, timmyRS, YCF L,
ypercube

FMashiro
4444, a coder, Eugene

Abhishek Aggrawal, Abubakkar, Darwin von Corax, Dinidu
, Drew, e4c5, juergen d, kolunar, llanato, Rick James,
userlond

Abubakkar, Batsu, juergen d, kolunar, Rick James,
uruloke, WAF

4444, Alex Shesterov, alex9311, andygeers, Aryo, Asaph,
Barranka, Benvorth, Brad Larson, CPHPython, Darwin
von Corax, Dinidu, Drew, fedorqui, HCarrasko, Jean Vitor,
John M, Matt, Misa Lazovic, Panda, Parth Patel, Paulo
Freitas, Pfemysl ét’astny, Rick, Rick James, Ronnie Wang
, Saroj Sasmal, Sebastian Brosch, skytreader, Stefan
Rogin, Strawberry, Timothy, ultrajohn, user6655061,
vijaykumar, Vini.g.fer, Vladimir Kovpak, WAF, YCF L,
Yury Fedorov

https://riptutorial.com/

251

https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/355931/barranka
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5535262/winter
https://riptutorial.com/contributor/7688650/lahiru
https://riptutorial.com/contributor/7056704/parthasen
https://riptutorial.com/contributor/1864100/bacluc
https://riptutorial.com/contributor/4634143/jen-r
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2057226/asjad-athick
https://riptutorial.com/contributor/1460461/benvorth
https://riptutorial.com/contributor/3270866/bhavin-solanki
https://riptutorial.com/contributor/7004388/chip
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/5055401/inzimam-tariq-it
https://riptutorial.com/contributor/2679935/julienc
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/3583831/kruti-patel
https://riptutorial.com/contributor/4859352/matthis-kohli
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/864496/thisisimpossible
https://riptutorial.com/contributor/4796321/timmyrs
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/344949/ypercube--
https://riptutorial.com/contributor/4461980/fmashiro
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/721073/a-coder
https://riptutorial.com/contributor/2178980/eugene
https://riptutorial.com/contributor/4932070/abhishek-aggrawal
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/5508736/darwin-von-corax
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/2194718/llanato
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1203805/userlond
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2304480/uruloke
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/1618292/alex9311
https://riptutorial.com/contributor/4397/andygeers
https://riptutorial.com/contributor/764788/aryo
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/355931/barranka
https://riptutorial.com/contributor/1460461/benvorth
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/5508736/darwin-von-corax
https://riptutorial.com/contributor/5508736/darwin-von-corax
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/5318192/jean-vitor
https://riptutorial.com/contributor/127776/john-m
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/5293076/saroj-sasmal
https://riptutorial.com/contributor/3840840/sebastian-brosch
https://riptutorial.com/contributor/777225/skytreader
https://riptutorial.com/contributor/1342199/stefan-rogin
https://riptutorial.com/contributor/1342199/stefan-rogin
https://riptutorial.com/contributor/1529673/strawberry
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/191064/ultrajohn
https://riptutorial.com/contributor/6655061/user6655061
https://riptutorial.com/contributor/1362531/vijaykumar
https://riptutorial.com/contributor/1718174/vini-g-fer
https://riptutorial.com/contributor/3612353/vladimir-kovpak
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/4378400/yury-fedorov

66

67

68

69

70

71

72

73

Temporary Tables

Time with subsecond
precision

Transaction
TRIGGERS

UNION

UPDATE

Using Variables

VIEW

Ponnarasu, Rick James

O. Jones

Ponnarasu, Rick James
Blag, e4c5, Matas Vaitkevicius, ratchet, WAF, YCF_L
Mattew Whitt, Rick James, Riho, Tarik, wangengzheng

4thfloorstudios, Chris, Drew, Khurram, Ponnarasu, Rick
James, Sevle

kolunar, user6655061

Abhishek Aggrawal, Divya, e4c5, Marina K., Nikita Kurtin,
Ponnarasu, R.K123, ratchet, Rick James, WAF, Yury

Fedorov, Vnbs MNnoTHWUKOB

https://riptutorial.com/

252

https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/205608/o--jones
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/5546267/blag
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/4279937/ratchet
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/44715/riho
https://riptutorial.com/contributor/5105831/tarik
https://riptutorial.com/contributor/6733949/wangengzheng
https://riptutorial.com/contributor/2532181/4thfloorstudios
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/6684190/khurram
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/4105359/sevle
https://riptutorial.com/contributor/3327081/kolunar
https://riptutorial.com/contributor/6655061/user6655061
https://riptutorial.com/contributor/4932070/abhishek-aggrawal
https://riptutorial.com/contributor/3195546/divya
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/6624680/ponnarasu
https://riptutorial.com/contributor/6322837/r-k123
https://riptutorial.com/contributor/4279937/ratchet
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4624423/--------------

	About
	Chapter 1: Getting started with MySQL
	Remarks
	Versions
	Examples
	Getting Started
	Information Schema Examples

	Processlist
	Stored Procedure Searching
	Chapter 2: ALTER TABLE
	Syntax
	Remarks
	Examples
	Changing storage engine; rebuild table; change file_per_table
	ALTER COLUMN OF TABLE
	ALTER table add INDEX
	Change auto-increment value
	Changing the type of a primary key column
	Change column definition
	Renaming a MySQL database
	Swapping the names of two MySQL databases
	Renaming a MySQL table
	Renaming a column in a MySQL table

	Chapter 3: Arithmetic
	Remarks
	Examples
	Arithmetic Operators

	BIGINT
	DOUBLE
	Mathematical Constants

	Pi
	Trigonometry (SIN, COS)

	Sine
	Cosine
	Tangent
	Arc Cosine (inverse cosine)
	Arc Sine (inverse sine)
	Arc Tangent (inverse tangent)
	Cotangent
	Conversion
	Rounding (ROUND, FLOOR, CEIL)

	Round a decimal number to an integer value
	Round up a number
	Round down a number
	Round a decimal number to a specified number of decimal places.
	Raise a number to a power (POW)
	Square Root (SQRT)
	Random Numbers (RAND)

	Generate a random number
	Random Number in a range
	Absolute Value and Sign (ABS, SIGN)

	Chapter 4: Backticks
	Examples
	Backticks usage

	Chapter 5: Backup using mysqldump
	Syntax
	Parameters
	Remarks
	Examples
	Creating a backup of a database or table
	Specifying username and password
	Restoring a backup of a database or table
	mysqldump from a remote server with compression
	restore a gzipped mysqldump file without uncompressing
	Backup direct to Amazon S3 with compression
	Tranferring data from one MySQL server to another
	Backup database with stored procedures and functions

	Chapter 6: Change Password
	Examples
	Change MySQL root password in Linux
	Change MySQL root password in Windows
	Process

	Chapter 7: Character Sets and Collations
	Examples
	Declaration
	Connection
	Which CHARACTER SET and COLLATION?
	Setting character sets on tables and fields

	Chapter 8: Clustering
	Examples
	Disambiguation

	Chapter 9: Comment Mysql
	Remarks
	Examples
	Adding comments
	Commenting table definitions

	Chapter 10: Configuration and tuning
	Remarks
	Examples
	InnoDB performance
	Parameter to allow huge data to insert
	Increase the string limit for group_concat
	Minimal InnoDB configuration
	Secure MySQL encryption

	Chapter 11: Connecting with UTF-8 Using Various Programming language.
	Examples
	Python
	PHP

	Chapter 12: Converting from MyISAM to InnoDB
	Examples
	Basic conversion
	Converting All Tables in one Database

	Chapter 13: Create New User
	Remarks
	Examples
	Create a MySQL User
	Specify the password
	Create new user and grant all priviliges to schema
	Renaming user

	Chapter 14: Creating databases
	Syntax
	Parameters
	Examples
	Create database, users, and grants
	MyDatabase
	System Databases
	Creating and Selecting a Database

	Chapter 15: Customize PS1
	Examples
	Customize the MySQL PS1 with current database
	Custom PS1 via MySQL configuration file

	Chapter 16: Data Types
	Examples
	Implicit / automatic casting
	VARCHAR(255) -- or not
	INT as AUTO_INCREMENT
	Others
	Introduction (numeric)
	Integer Types
	Fixed Point Types
	Decimal
	Floating Point Types
	Bit Value Type
	CHAR(n)
	DATE, DATETIME, TIMESTAMP, YEAR, and TIME

	Chapter 17: Date and Time Operations
	Examples
	Now()
	Date arithmetic
	Testing against a date range
	SYSDATE(), NOW(), CURDATE()
	Extract Date from Given Date or DateTime Expression
	Using an index for a date and time lookup

	Chapter 18: Dealing with sparse or missing data
	Examples
	Working with columns containg NULL values

	Chapter 19: DELETE
	Syntax
	Parameters
	Examples
	Delete with Where clause
	Delete all rows from a table
	LIMITing deletes
	Multi-Table Deletes

	foreign keys
	Basic delete
	DELETE vs TRUNCATE
	Multi-table DELETE

	Chapter 20: Drop Table
	Syntax
	Parameters
	Examples
	Drop Table
	Drop tables from database

	Chapter 21: Dynamic Un-Pivot Table using Prepared Statement
	Examples
	Un-pivot a dynamic set of columns based on condition

	Chapter 22: ENUM
	Examples
	Why ENUM?
	TINYINT as an alternative
	VARCHAR as an alternative
	Adding a new option
	NULL vs NOT NULL

	Chapter 23: Error 1055: ONLY_FULL_GROUP_BY: something is not in GROUP BY clause ...
	Introduction
	Remarks
	Examples
	Using and misusing GROUP BY
	Misusing GROUP BY to return unpredictable results: Murphy's Law
	Misusing GROUP BY with SELECT *, and how to fix it.
	ANY_VALUE()

	Chapter 24: Error codes
	Examples
	Error code 1064: Syntax error
	Error code 1175: Safe Update
	Error code 1215: Cannot add foreign key constraint
	1045 Access denied
	1236 "impossible position" in Replication
	2002, 2003 Cannot connect
	1067, 1292, 1366, 1411 - Bad Value for number, date, default, etc.
	126, 127, 134, 144, 145
	139
	1366
	126, 1054, 1146, 1062, 24

	Chapter 25: Events
	Examples
	Create an Event

	Schema for testing
	Create 2 events, 1st runs daily, 2nd runs every 10 minutes
	Show event statuses (different approaches)
	Random stuff to consider

	Chapter 26: Extract values from JSON type
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Read JSON Array value
	JSON Extract Operators

	Chapter 27: Full-Text search
	Introduction
	Remarks
	Examples
	Simple FULLTEXT search
	Simple BOOLEAN search
	Multi-column FULLTEXT search

	Chapter 28: Group By
	Syntax
	Parameters
	Remarks
	Examples
	GROUP BY USING SUM Function
	Group By Using MIN function
	GROUP BY USING COUNT Function
	GROUP BY using HAVING
	Group By using Group Concat
	GROUP BY with AGGREGATE functions

	Chapter 29: Handling Time Zones
	Remarks
	Examples
	Retrieve the current date and time in a particular time zone.
	Convert a stored `DATE` or `DATETIME` value to another time zone.
	Retrieve stored `TIMESTAMP` values in a particular time zone
	What is my server's local time zone setting?
	What time_zone values are available in my server?

	Chapter 30: Indexes and Keys
	Syntax
	Remarks

	Concepts
	Examples
	Create index
	Create unique index
	Drop index
	Create composite index
	AUTO_INCREMENT key

	Chapter 31: INSERT
	Syntax
	Remarks
	Examples
	Basic Insert
	INSERT, ON DUPLICATE KEY UPDATE
	Inserting multiple rows

	Ignoring existing rows
	INSERT SELECT (Inserting data from another Table)
	INSERT with AUTO_INCREMENT + LAST_INSERT_ID()
	Lost AUTO_INCREMENT ids

	Chapter 32: Install Mysql container with Docker-Compose
	Examples
	Simple example with docker-compose

	Chapter 33: Joins
	Syntax
	Examples
	Joining Examples
	JOIN with subquery ("Derived" table)
	Retrieve customers with orders -- variations on a theme
	Full Outer Join
	Inner-join for 3 tables
	Joins visualized

	Chapter 34: JOINS: Join 3 table with the same name of id.
	Examples
	Join 3 tables on a column with the same name

	Chapter 35: JSON
	Introduction
	Remarks
	Examples
	Create simple table with a primary key and JSON field
	Insert a simple JSON
	Insert mixed data into a JSON field.
	Updating a JSON field
	CAST data to JSON type
	Create Json Object and Array

	Chapter 36: Limit and Offset
	Syntax
	Remarks
	Examples
	Limit and Offset relationship

	LIMIT clause with one argument
	LIMITclause with two arguments
	OFFSET keyword: alternative syntax
	Chapter 37: LOAD DATA INFILE
	Syntax
	Examples
	using LOAD DATA INFILE to load large amount of data to database
	Import a CSV file into a MySQL table
	Load data with duplicates

	LOAD DATA LOCAL
	LOAD DATA INFILE 'fname' REPLACE
	LOAD DATA INFILE 'fname' IGNORE
	Load via intermediary table
	import / export

	Chapter 38: Log files
	Examples
	A List
	Slow Query Log
	General Query Log
	Error Log

	Chapter 39: Many-to-many Mapping table
	Remarks
	Examples
	Typical schema

	Chapter 40: MyISAM Engine
	Remarks
	Examples
	ENGINE=MyISAM

	Chapter 41: MySQL Admin
	Examples
	Change root password
	Drop database
	Atomic RENAME & Table Reload

	Chapter 42: MySQL client
	Syntax
	Parameters
	Examples
	Base login
	Execute commands

	Execute command from a string
	Execute from script file:
	Write the output on a file

	Chapter 43: MySQL LOCK TABLE
	Syntax
	Remarks
	Examples
	Mysql Locks
	Row Level Locking

	Chapter 44: Mysql Performance Tips
	Examples
	Select Statement Optimization
	Optimizing Storage Layout for InnoDB Tables
	Building a composite index

	Chapter 45: MySQL Unions
	Syntax
	Remarks
	Examples
	Union operator
	Union ALL
	UNION ALL With WHERE

	Chapter 46: mysqlimport
	Parameters
	Remarks
	Examples
	Basic usage
	Using a custom field-delimiter
	Using a custom row-delimiter
	Handling duplicate keys
	Conditional import
	Import a standard csv

	Chapter 47: NULL
	Examples
	Uses for NULL
	Testing NULLs

	Chapter 48: One to Many
	Introduction
	Remarks
	Examples
	Example Company Tables
	Get the Employees Managed by a Single Manager
	Get the Manager for a Single Employee

	Chapter 49: ORDER BY
	Examples
	Contexts
	Basic
	ASCending / DESCending
	Some tricks

	Chapter 50: Partitioning
	Remarks
	Examples
	RANGE Partitioning
	LIST Partitioning
	HASH Partitioning

	Chapter 51: Performance Tuning
	Syntax
	Remarks
	Examples
	Add the correct index
	Set the cache correctly
	Avoid inefficient constructs
	Negatives
	Have an INDEX
	Don't hide in function
	OR
	Subqueries
	JOIN + GROUP BY

	Chapter 52: Pivot queries
	Remarks
	Examples
	Creating a pivot query

	Chapter 53: PREPARE Statements
	Syntax
	Examples
	PREPARE, EXECUTE and DEALLOCATE PREPARE Statements
	Construct and execute
	Alter table with add column

	Chapter 54: Recover and reset the default root password for MySQL 5.7+
	Introduction
	Remarks
	Examples
	What happens when the initial start up of the server
	How to change the root password by using the default password
	reset root password when " /var/run/mysqld' for UNIX socket file don't exists"

	Chapter 55: Recover from lost root password
	Examples
	Set root password, enable root user for socket and http access

	Chapter 56: Regular Expressions
	Introduction
	Examples
	REGEXP / RLIKE

	Pattern ^
	Pattern $**
	NOT REGEXP
	Regex Contain
	Any character between []
	Pattern or |

	Counting regular expression matches
	Chapter 57: Replication
	Remarks
	Examples
	Master - Slave Replication Setup
	Replication Errors

	Chapter 58: Reserved Words
	Introduction
	Remarks
	Examples
	Errors due to reserved words

	Chapter 59: Security via GRANTs
	Examples
	Best Practice
	Host (of user@host)

	Chapter 60: SELECT
	Introduction
	Syntax
	Remarks
	Examples
	SELECT by column name
	SELECT all columns (*)
	SELECT with WHERE

	Query with a nested SELECT in the WHERE clause
	SELECT with LIKE (%)
	SELECT with Alias (AS)
	SELECT with a LIMIT clause
	SELECT with DISTINCT
	SELECT with LIKE(_)
	SELECT with CASE or IF
	SELECT with BETWEEN
	SELECT with date range

	Chapter 61: Server Information
	Parameters
	Examples
	SHOW VARIABLES example
	SHOW STATUS example

	Chapter 62: SSL Connection Setup
	Examples
	Setup for Debian-based systems

	Generating a CA and SSL keys
	Adding the keys to MySQL
	Test the SSL connection
	Enforcing SSL
	References and further reading:
	Setup for CentOS7 / RHEL7

	First, log on to dbserver
	END OF SERVER SIDE WORK FOR NOW.
	still on the client here
	NOW WE ARE READY TO TEST THE SECURE CONNECTION
	We're still on appclient here
	Chapter 63: Stored routines (procedures and functions)
	Parameters
	Remarks
	Examples
	Create a Function
	Create Procedure with a Constructed Prepare
	Stored procedure with IN, OUT, INOUT parameters
	Cursors
	Multiple ResultSets
	Create a function

	Chapter 64: String operations
	Parameters
	Examples
	Find element in comma separated list
	STR_TO_DATE - Convert string to date
	LOWER() / LCASE()
	REPLACE()
	SUBSTRING()
	UPPER() / UCASE()
	LENGTH()
	CHAR_LENGTH()
	HEX(str)

	Chapter 65: Table Creation
	Syntax
	Remarks
	Examples
	Basic table creation

	Setting defaults
	Table creation with Primary Key

	Defining one column as Primary Key (inline definition)
	Defining a multiple-column Primary Key
	Table creation with Foreign Key
	Cloning an existing table
	CREATE TABLE FROM SELECT
	Show Table Structure
	Table Create With TimeStamp Column To Show Last Update

	Chapter 66: Temporary Tables
	Examples
	Create Temporary Table
	Drop Temporary Table

	Chapter 67: Time with subsecond precision
	Remarks
	Examples
	Get the current time with millisecond precision
	Get the current time in a form that looks like a Javascript timestamp.
	Create a table with columns to store sub-second time.
	Convert a millisecond-precision date / time value to text.
	Store a Javascript timestamp into a TIMESTAMP column

	Chapter 68: Transaction
	Examples
	Start Transaction
	COMMIT , ROLLBACK and AUTOCOMMIT
	Transaction using JDBC Driver

	Chapter 69: TRIGGERS
	Syntax
	Remarks

	FOR EACH ROW
	CREATE OR REPLACE TRIGGER
	Examples
	Basic Trigger
	Types of triggers

	Timing
	Triggering event
	Before Insert trigger example
	Before Update trigger example
	After Delete trigger example
	Chapter 70: UNION
	Syntax
	Remarks
	Examples
	Combining SELECT statements with UNION
	ORDER BY
	Pagination via OFFSET
	Combining data with different columns
	UNION ALL and UNION
	Combining and merging data on different MySQL tables with the same columns into unique rows and running query

	Chapter 71: UPDATE
	Syntax
	Examples
	Basic Update

	Updating one row
	Updating all rows
	Update with Join Pattern
	UPDATE with ORDER BY and LIMIT
	Multiple Table UPDATE
	Bulk UPDATE

	Chapter 72: Using Variables
	Examples
	Setting Variables
	Row Number and Group By using variables in Select Statement

	Chapter 73: VIEW
	Syntax
	Parameters
	Remarks
	Examples
	Create a View
	A view from two tables
	Updating a table via a VIEW
	DROPPING A VIEW

	Credits

